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Abstract 
This report presents the design and evaluation of the garbage collector we designed for the 

Aquarius project. Our design is the result of an attempt to incorporate into Prolog implementa­
tions the ideas which made generation scavenging successful for Lisp and Smalltalk. The main 
challenge was to take advantage of generation scavenging without giving away the basic Prolog 
technique of memory recovery upon backtracking based on stack deallocation. We were able 
to do so with little extra overhead at run-time. Our main strategy consists in restricting the 
action of the garbage collector to a fixed amount of memory allocated at the top of the global 
stack. This strategy has several advantages: it improves the locality of the executing program 
by keeping the data structures compacted and by allocating new objects in a fixed part of the 
address space; it improves the locality and the predictability of the garbage collection, which can 
concentrate its efforts on the fixed size area where new objects are allocated; and it allows us to 
use simpler, time-efficient garbage collection algorithms. The performance of the algorithm is 
further enhanced by the use of copying algorithms whenever made possible by the deterministic 
nature of the executing program. 

1 Introduction 

This report presents the design of the Aquarius Prolog garbage collector. The fundamental goal of 

the Aquarius project is to establish the principles by which very large improvements in performance 

can be achieved in machines specialized for calculating difficult problems in design automation, 

expert systems, and signal processing. It is currently focusing on an eJ-..-perimental multiprocessor 

architecture for the high performance execution of Prolog. 

Our goal was to design a fast garbage collector for Aquarius which does not have the following 

problems associated with existing algorithms for Prolog: poor locality and thus poor virtual memory 

performance, excessive complexity of the design, reduction in addressing capability due to the need 

for garbage collection bits. 

To achieve higli performance and good locality, we adapted to Prolog the principles of generation 

based garbage collection which were developed for Lisp and Smalltalk [LH83,Moo84,Ung87,Sha87]. 

These techniques are based on the fact that most garbage cells are to be found among newly 

created objects. A garbage collector that concentrates its efforts on newly allocated objects can 

have high locality, low cpu requirements, while recovering most of the unused space. 
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Our garbage collector is based on several of these techniques. In our scheme, as in generation 

scavenging [Ung87], new objects are allocated on an area of a fixed size, in a fixed memory location, 

and the garbage collector is called when this area is filled up with new objects. We support only two 

generations, old and new, and we only garbage collect the objects once. We argue, in section 2.2 

that this simple strategy is the most suitable in the case of Prolog. Our algorithm is described in 

more detail in section 3 

Another_ factor which contributes to the speed of advanced Lisp and Small talk garbage collectors 

is the use of algorithms based on copying, as opposed to the slower marking and compacting 

technique. The main drawback of copying algorithms is that they do not conserve the order of 

creation of objects, while marking and compacting algorithms do. This makes the use of copying 

algorithms difficult in Prolog, since global objects are usually created on a global stack, to allow 

fast memory recovery when backtracking. 

Using heap allocation of data structures in Prolog would allow the use of fast copying algorithms 

for garbage collection. Unfortunately, it would make the recovery of storage on backtracking much 

slower, and the implementation not significantly simpler. To get the best of both worlds, we 

suggest instead to keep the stack allocation of global objects and to make use of copying algorithms 

to garbage collect deterministic computations. We describe in section 4 how we were able to obtain 

significant speedups that way. 

In section 5, we discuss what kind of hardware and operating support could be used to speed up 

our algorithms. In section 6, we introduce some other issues relevant to Prolog garbage collection: 

among them, a an assessment of virtual backtracking. Finally, in section 7, we review previous 

work on Prolog garbage collection and compare it with our scheme. 

2 Prolog Specifics 

In the next subsection, we give a short introduction to the Warren Abstract Machine (WAM) 

[War83]. This subsection can be skipped by the reader if he or she is familiar with the WAM. In 

the following subsections, we discuss in more detail those features of the WAM which have a strong 

influence of the design of the garbage collector. 

2.1 Basic Notions on the WAM 

2.1.1 Memory Layout 

The WAM subdivides the memory into four areas: the environment stack, the choice point stack, 

the global stack and the trail stack. The environment stack and the choice point stack may or may 

not l)e interleaved, depending on the exact details of the implementation. 

Environments and choice points are described below. The global stack contains all the objects 

created during the execution of the program which either survive the procedure instantiation which 

created them, or are of a complex type (list or structure). It plays a role similar to the heap in 

Lisp implementations. 
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The trail stack contains the addresses of the variables that have to be reset when backtracking 

occurs. It is similar to a database log file. 

2.1.2 Environments 

Environments are the WAM equivalent of activation records in procedural languages. They contain 

the necessary information to implement procedure calls. They do not contain procedure arguments, 

as arguments are passed in registers. They contain only those local variables which have to survive 

a procedure call. 

2.1.3 Choice Points 

Choice points are records which save enough information about the a previous state of computation 

to allow backtracking to come back to this state. They contain the values of all the stack pointers 

at a given state of computation, as well as the contents of the active data registers. To backtrack 

to a given state, the WAM resets all the variables whose addresses have been logged into the trail 

stack since that state, then pops the stacks and restores the data registers to their previous values. 

2.1.4 Variables and Untyped Pointers 

Prolog variables can be seen as a special kind of data type. A Prolog variable can be in one of two 

states: bound or unbound. The two operations which can be performed on a variable are to bind 

it to a value or to read its value. A variable can be bound to any data object, including another 

variable, except that binding a variable to itself has no effect. Once a variable is bound, it cannot 

be bound again, unless it is reset to unbound by backtracking. The value of a variable is some 

unique identifier when it is unbound, or the value of the object it is bound to. 

In the WAM, each variable is associated with a memory location (or a register for temporary 

variables). If the variable is unbound, it is usually implemented with a self-referencing pointer. If 

the variable is bound, it contains either the object or a pointer to the object it has been bound 

to. In case the object is itself an unbound variable, the variable is set to contain an untyped 

pointer pointing to this variable. This mechanism may create long chains of untyped pointers to be 

dereferenced at each access, but rarely does in practice [Tic85]. 

2.2 Automatic Memory Deallocation and the Need for Garbage Collection 

One characteristic of Prolog programs, as opposed to Lisp or Smalltalk programs, is that upon 

query completion, the space used by the data structures created during execution of the query 

is automatically recovered, without the need for garbage collection. Moreover, within a query, 

many programs deallocate by backtracking a large fraction of the memory cells they allocate, as 

illustrated in table 1. 

The programs we used in this simple experiment are as follows: BOYER, and BROWSE are Prolog 

versions of the corresponding Lisp Gabriel benchmarks [Gab85]; CHAT is a natural language parser, 
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I PROGRAMS II Total Allocated I Ma:z:imum Used II Percentage I 
boyer 2.331 2.331 100.0% 

browse 0.896 0.065 7.2% 

chat 0.731 0.006 0.8% 

compiler 6.648 3.467 52.2% 

quicksort 24.161 12.651 52.4% 

Table 1: Memory Usage in MB 

parsing 16 sentences; COMPILER is a version of the Berkeley Prolog compiler compiling a program 

of 225 clauses and 87 procedures; quicksort is the quick sort program sorting a. list of 23880 sma.ll 

integers. 

Those programs which solve a. sequence of queries (CHAT) or rely on backtracking to explore 

a search space (BROWSE) do not require garbage collection, while more deterministic programs 

(COMPILER, BOYER, QUICKSORT) do. The memory recovery observed in COMPILER a.nd QUICKSORT 

is mainly due to sha.llow backtracking. Better compilation technology than the one we currently 

use will increase those percentages, by avoiding to allocate extra. storage on the global stack before 

a clause ha.s been selected in a. deterministic procedure call. 

Though in practice large programs display behaviors of arbitrary complexity, we expect tha.t 

deterministic programs, or deterministic parts of large programs, are more likely to be in need for 

garbage collection, since they do not ha.ve other means of recovering heap space. In section 4, we 

give techniques to speed up garbage collection for deterministic programs. 

2.3 The Trail Stack Contains Pointers from Old to New Objects 

To speed up garbage collection, it is important to reduce the amount of memory that ha.s to be 

scanned to find all the references into the memory area to be garbage collected [Ung87,Sha.87]. 

Previous researchers [AHS87,BM86] ha.ve pointed out tha.t it is possible to exploit the back­

tracking mechanism to reduce the amount of memory tha.t ha.s to be scanned on garbage collection. 

The ma.in observation is tha.t if one wants to collect the part global stack a.lloca.ted since the creation 

of a. choice point C, it is only necessary to scan the portion of the stacks a.lloca.ted since the creation 

of C. The backtracking mechanism assures tha.t all pointers from locations a.lloca.ted before the 

creation of C pointing to locations created after the creation of C are accessible indirectly through 

entries in the trail stack allocated after the creation of C. 

The main drawback with this a.pproa.ch is tha.t we cannot predict in general the amount of 

memory above the topmost choice point. In the extreme ca.se of a. deterministic program, the 

use of choice points is trivial (sha.llow backtracking), and garbage collection cannot be localized. 

Moreover, a.s we pointed out previously, deterministic programs are those programs which are most 

likely to need ga.rba.ge collection. 
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To be able to use local garbage collection in a more general situation, we still have to guarantee 

that pointers from an older location to a newer location are recorded in an appropriate log. This 

log is to be processed during garbage collection to limit the amount of memory to be scanned. A 

similar technique is used in [Ung87]. 

In a Prolog implementation, the obvious choice is to use the trailing mechanism to that purpose. 

We decided to record in the trail every variable binding, which guarantees that the trail stack 

contains the addresses of all pointers from old objects to new objects, and to leave to the garbage 

collector the role of garbage collecting the trail stack. We discuss this issue further in section 6.6. 

2.4 Living, Preserved and Dead Objects 

Garbage collectors for Lisp or Smalltalk have only to deal with two kinds of objects: the living 

objects, which are reachable from the registers, the control frames, and the global variables, and 

the dead objects, which are not. 

Backtracking introduces a third kind of object which we call preserved objects. A preserved 

object is an object that is not directly accessible from registers and control frames, but is accessible 

from the register values saved in choice points, or from the inactive parts of control frames saved 

by the backtracking mechanism. 

Let So be the initial state of the program, Sn the present state of the program, and S1, ... , Sn-1 

be the intermediate states of the program currently saved by the backtracking mechanism. For any 

preserved object, there is some integer k < n, such that the object is accessible from state Sk but 

is not accessible from state Sk+1 , ••• , Sn. Any modification to the preserved object that may have 

occurred since state Sk will be undone by backtracking before the object is ever referenced by the 

program again. In particular, pointers contained in the preserved object that are newer than Sk 

need not be followed by the garbage collector. Instead, these pointers can be reset to unbound. 

This operation, akin to backtracking, is known a.s virtual backtracking [PB85,AHS87]. 

Virtual backtracking is an optimization of the garbage collector and may be ignored. In that 

case, the garbage collector does not distinguish between preserved objects and living objects. In 

section 6.5 we present a simple implementation of virtual backtracking derived from [AHS87] which 

does not require marking bits, and we discuss the importance of this optimization. 

2.5 The Logical Variable 

The W AM implementation of Prolog logical variables makes use of untyped pointers to data struc­

tures, which are normally automatically dereferenced when encountered, except when they are 

self-referencing. Self-referencing pointers are used to implement unbound variables. These point­

ers are guaranteed to always point from new to old objects, to prevent dangling references from 

occurring on backtracking. 

This ordering constraint and the presence of self-referencing pointers complicates the algorithms 

based on copying or on pointer reversal techniques (see for example, the adaptation to Prolog of 
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Morris' algorithm [Mor79] in [AHS87]). Self-referencing pointers make variable sharing easy, but 

relocation more difficult. 

This ordering constraint does not need to be respected when the variable and the object it 

points to are not separated by a choice point. A copying garbage collector can take advantage of 

this fact. 

2.6 Initialization of Local Variables 

Local variables have to be initialized before each call to the garbage collector, to avoid the presence 

of dangling references when the garbage collector is invoked. 

In current WAM implementations, programs can only create a constant amount of objects 

between two procedure calls. It is therefore sufficient to check for stack overflow at procedure entry. 

This guarantees that the garbage collector will only be called at procedure entry. Consequently, we 

only have to guarantee that variables are correctly initialized at procedure entry, which allows us 

to dramatically reduce the number of initialization instructions that would be required otherwise, 

as illustrated in table 2. An example of the optimization performed by the compiler is given below. 

allocate 2 

get_variable Y1,X1 

call foo 
put_val ue Y1, X2 
put_variable Y2,X3 

allocate 

init Y1 

init Y2 
get_variable Y1,X1 

call foo 
put_value Y1, X2 

put_variable Y2,X3 

allocate 

init Y2 

get_variable Y1,X1 

call foo 
put_value Y1,X2 

put_value Y2,X3 

It should be noted that, when the first use of a local variable occurs after a procedure call, 

the use annotation should be a value annotation instead of a variable annotation to ensure that 

the binding is trailed, as illustrated in the preceding example. This is necessary in the case the 

procedure call leaves a choice point, and the local variable is bound to an object created on the 

global stack above this choice point. In this situation, the variable contains a pointer from an 

object created before a choice point pointing to an object created after the same choice point, and 

the garbage collector relies on the fact that every such pointer has been trailed to avoid scanning 

the bottom part of the environment stack. 

Some built-ins require an unbounded amount of space on the global stack (e.g. retroct). Since 

they should also check for overfiow, and may invoke the garbage collector, their invocation should 

be considered as a procedure call by the optimizer. 

3 A Simple Garbage Collector 

In this section, we will first present a simple version of our garbage collector. This algorithm is easy 

to implement, does not require the complexity of algorithms based on pointer reversal techniques, 

and displays good performance and locality. 
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PROGRAMS Before After Removed 

boyer 19 0 100.0% 

browse 34 7 79.4% 

chat 768 85 88.9% 

comp 977 105 89.3% 

qsort 11 2 81.8% 

Table 2: Initialization Optimization 

We will first introduce some terminology that we will use throughout the rest of this paper. 

Then we will describe our algorithm in more detail, and finally present some performance results. 

3.1 Terminology and Basic Concepts 

Our basic terminology is similar to the one used by (Sha87]. 

• new space is the part of the global stack, of fixed size, in which new objects are allocated 

when created. The garbage collector only garbage collects new space. After each garbage 

collection, the remaining living cells are added to old space. In our scheme, we lock new 

space at the top of the address space allocated to the global stack. This has the double 

advantage of increasing the locality of the executing program and simplifying the garbage 

collector; a similar trick was used by Ungar [Ung87]. H is the pointer pointing at the next 

free location of new space. 

• old space is the part of the global stack that contains all the data objects that have survived 

a garbage collection. It is formed of one contiguous segment of address space, at the bottom 

of the global stack. Its size is only limited by the size of the address space. H2 is the pointer 

pointing at the next free location of old space. 

• copy space is the part of the global stack just above old space in which the garbage collector 

copies the surviving objects. It is added to old space when the garbage collector completes 

its work. 

• base space is the part of the memory which contains references to objects in new space that 

have to survive a garbage collection. In the case new space starts at a choice point boundary, 

base space is only composed of the part of the environment stack, the choice point stack 

above this choice point, as well as the memory locations pointed to by entries in the trail 

stack above this choice point [BM86,AHS87]. Since in general new space does not start at a 

choice point boundary, we keep track of stack pointer variations to determine the exact limit 

of base space. This is explained in more detail in section 3.3. 

We choose the simplest possible design by making objects in new space which survive only 

one garbage collection elements of old space, and therefore no longer candidates for subsequent 
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NEW SPACE BOYER COMPILER 

IN KB global trail global trail 

16 24.8% 0.4% 17.1% 3.4% 
32 22.4% 0.3% 11.2% 1.9% 

64 20.4% 0.1% 9.0% 1.5% 

128 18.6% 0.1% 6.8% 1.0% 

256 16.8% 0.0% 5.4% 0.8% 

512 13.8% 0.0% 4.0% 0.6% 

1024 11.8% 0.0% 2.6% 0.6% 

2048 11.5% 0.0% 2.4% 0.6% 

Table 3: Garbage Collection Survival Rate 

garbage collections. In other words, we only support two generations of objects: old and new. 

We believe that this is the adequate choice for Prolog for two reasons. First, most objects do 

not survive their first garbage collection, as illustrated in table 3. (Our results agree with similar 

studies for Lisp and Smalltalk. For Lisp, Shaw found the proportion of new objects which survive 

their first garbage collection to be between 10% and 30% with a new space size of 32KBytes. For 

Smalltalk, Ungar found 20% of survivors after their first garbage collection with a new space size 

of20KBytes [Ung87]). By garbage collecting objects only once, we can expect to recover 70 to 90% 

of the garbage cells. Second, Prolog programs have other means of recovering memory, through 

backtracking or query completion. We thus do not have to worry as much about the management 

of very old objects. 

An important point to note is the very low survival rate of pointers in the trail stack. The trail 

stack should not be neglected; the amount of trail stack scanned by the garbage collector is roughly 

85% of the amount of global stack scanned for BOYER, and 45% for COMPILER. While interpreting 

these data, it should be kept in mind that our implementation trails every variable binding. 

3.2 Invocation Mechanism and Area Overflow 

The garbage collector can only be invoked at procedure entry or inside the few built-ins which 

are not guaranteed to allocate a fixed amount of memory. This has the advantage of reducing the 

number of stack over.fiow checks, when not detected by hardware, and allows us to optimize the 

local variable initialization code, as mentioned above. 

At procedure entry, H is checked against the address space limit. On over.fiow, the garbage 

collector is called. To prevent over.fiow from happening between two procedure calls, a provision 

for overflow is made at the top of new space. 

Builtins which may create large objects should either know in advance how much memory they 

will need, or be restartable. The case of a built-in needing more space than an entire new space 

should be handled properly. The simplest solution is to first garbage collect new space, and then 
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allocate the new object on the top of old space. 

3.3 Bookkeeping and Overhead on Normal Execution 

Our scheme requires the use of several additional registers to maintain information on which part 

of the memory needs to be scanned at the next garbage collection. These registers need not be 

saved in choice points. 

The bookkeeping required by our algorithm is as follows: 

1. we need to maintain two heap pointers, H and H2, instead of one. H2 needs only be updated 

in the case when failure deallocates ne'll space entirely which is a rare event. (with ne'll 

space of size 16KB, this event only occurred 109 times in the COMPILER benchmark). Just 

give the data for compand beyer, and for window= 32) 

2. there is a similar bookkeeping to perform for the two trail stack pointers TR and TR2. TR2 

points at the top of the stack, while TR2 contains the lowest value of TR since the last 

garbage collection. 

3. we also maintain a E and a E2 pointer. The E points to the current environment, which 

may not be at the top of the stack. The E2 pointer contains the lowest value of E since the 

last garbage collection. There is more overhead associated with the E pointer, since it has 

has also to be maintained on environment deallocation (the deallocate instruction in the 

WAM). 

The use of E2 is not as crucial than the use of H2 and TR2, since the environment stack is 

typically much smaller than the global stack or the trail stack. It could be dispensed of, at the cost 

of some unnecessary scans of environments during garbage collection. 

There is no need to maintain B2 pointers for choice points, since this information can be easily 

retrieved from the H2 or E2 pointers by the garbage collector. 

3.4 Marking 

Our marking algorithm is straightforward. It does not implement virtual backtracking, and treats 

preserved objects as dead objects. We will discuss in section 6.5 how it is possible to extend our 

algorithm to implement virtual backtracking. 

Marking proceeds recursively from all the pointers in base space pointing into ne'll space. It 

does not need to visit the objects outside ne'll space it may encounter [BM86,AHS87]. The locality 

of base space and ne'll space guarantees the locality of our marking algorithm. During this phase, 

we can use copy space as a recursion stack for recursive marking, which is simpler and faster than 

its more space efficient alternatives [Coh81]. We discuss the use of marking bits in section 6.4. 
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WINDOW SIZE elapsed time page faults speedup 

(KB) average 90 percentile average 90 percentile 

16 185.4 0.74% 0.00 ± 0.00 1.31 

32 184.1 0.52% 0.00 ± 0.00 1.32 

64 182.7 0.33% 0.00 ± 0.00 1.33 

128 182.7 0.74% 0.00 ± 0.00 1.33 

256 181.3 0.21% 0.00 ± 0.00 1.34 

512 184.0 1.11% 4.14 ± 5.98 1.32 

1024 215.9 1.09% 360.43 ± 29.46 1.13 

2048 243.1 2.33% 752.00 ± 31.22 1.00 

Table 4: Paging Performance with the Boyer Benchmark 

3.5 Compacting 

The compacting phase of our algorithm simply slides down the marked cells in new space to copy 

space, updates the internal pointers on the fly, and leaves behind in new space the corresponding 

relocation addresses. Unmarked cells are also overwritten with the relocation address of the most 

recent marked cell encountered; this is for simplifying the next phase of the algorithm. 

3.6 Updating 

The algorithm finally rescans base space in search for pointers to new space· to be updated to 

their new value. It uses the relocation table now contained in new space for that purpose. It also 

updates the global stack pointer (H) choice point entries by using the relocation table. 

3.7 Performance Results 

We measured the paging and elapsed time performance of our algorithm on a Sun 3-50, with 3.2MB 

of physical memory, running Sun Unix 4.2 release 3.2. The benchmark used is BOYER.. We varied 

the size of new space from 16 to 2048 KBytes. The benchmark was run 7 times; we give the average 

results as well as the confidence interval for the 90 percentile. The results ar.e given in table 4. 

We believe that these results are not as dramatic as they should be for a faster system. Our 

measurements were taken on a byte-code emulator, which performance is roughly 3 to 6 times 

slower than Quintus Prolog. All other things being equal, speeding up our emulator by a factor 

of 3 in program execution would make the lack of locality of the exhaustive garbage collector look 

worse than the more local garbage collectors by a factor of 2 instead of 1.3. 

For high-e_nd machines, the lack of locality is even more costly. In a previous implementation 

of our algorithm, also on a relatively slow byte-code emulator, we observed a reduction by a factor 

of 20 of the number of page faults on an IBM 3081, and a speedup of the program by a factor of 
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1.5 for a maximum ne'll space size of 512KB. Unfortunately paging measurements for time sharing 

systems are heavily dependent on the load, and thus are not very accurate. 

4 Taking Advantage of Copying Algorithms 

The algorithm we introduced in the previous section displays much higher locality than exhaustive 

garbage collectors. By reducing paging, it is has the potential of reducing the elapsed time of spent 

in program .execution. To increase the performance of the garbage collector in terms of cpu time, 

we propose to take advantage of copying algorithms. 

We first propose a simple algorithm which takes advantage of copying only when the entire ne'll 

space is above the topmost choice point. We then investigate a more general way to incorpora:.te 

copying into our algorithm to extend its scope of applicability. 

4.1 A Simple Scheme using Copying Algorithm 

This simple scheme works as follows: whenever the garbage collector is called, it tests to see whether 

the entire ne'll space is above the topmost choice point. If it is the case, it uses a copying algorithm 

to perform garbage collection. It is possible to do so since in that case the relative order of the data 

structures in ne'll space need not be maintained. Otherwise, it uses the marking and compacting 

algorithm we presented previously. We describe the copying algorithm we use in more detail in the 

next subsection. 

4.1.1 The Copying Algorithm 

The copying algorithm we used is directly derived from classic copying techniques ([Che70,Bak78]). 

It proceeds as follows: for each pointer into ne'll space pointing to an unmarked object, the ob­

ject pointed to is copied into old space. The original copy is marked and replaced by relocation 

pointers pointing to the corresponding locations into old space. Pointers to marked locations are 

immediately relocated. 

The only potential difficulty in adapting copying algorithms to Prolog is due to the presence 

of untyped pointers. An untyped pointer can point to an element of a structure or a list. In a 

straightforward implementation, if the copying algorithm encounters first the pointer and later the 

structure or the list, the cell pointed to by the untyped pointer will be copied twice. In the present 

case, however, the entire ne'll space is guaranteed to be above the topmost choice point. Therefore 

there is no need to maintain untyped pointers into ne'll space to' guarantee the correctness of the 

backtracking mechanism. Our algorithm simply removes all untyped pointers pointing into ne'll 

space. 

11 



WINDOW SIZE mark & compact copy speedup 

(KBYTES) average 90 percentile average 90 percentile 

16 4.51 0.55% 3.37 1.07% 1.34 

32 4.17 1.08% 3.04 1.61% 1.37 

64 3.95 0.84% 2.87 1.06% 1.38 

128 3.62 1.17% 2.59 0.42% 1.39 

256 3.27 1.50% 2.31 1.17% 1.41 

512 3.04 1.30% 2.10 1.67% 1.45 

1024 2.95 1.01% 1.97 1.61% 1.50 

2048 2.99 1.20% 2.03 1.07% 1.47 

Table 5: Performance of Improved GC with the Boyer Benchmark· 

4.1.2 Performance 

We compared the efficiency of the copying algorithm with our previous algorithm based on mark 

and compact. We used BOYER as a benchmark and the Unix getrusage system call to measure 

the time spent in the garbage collector. The benchmark was run 6 times. We give the average 

results as well as the confidence intervals for the 90 percentile in table 5. In this measurement, the 

program was entirely deterministic, and only the faster copy algorithm was used by the enhanced 

algorithm. 

By comparing the data of table 5 with the data of table 3, we can see that the experiments 

confirm the fact that copying perform better with lower survival rates. For example, similar exper­

iments with the QUICKSORT benchmark yields speedups of up to 1.86 for a survival rate of 4.9%, 

with 1024KB allocated to new space. 

4.2 An Improvement on the Simple Scheme using Copying Algorithm 

We can extend the scope of applicability of the copying algorithm as follows. At each garbage 

collection call, we interweave marking and copying. Copying is used whenever a pointer to the 

first choice point segment in new area is encountered; otherwise marking is performed. There is 

little difficulty in doing so since marking and copying can follow the same order of traversal of 

the program data structures. We will give more details on this technique in the next section. We 

present our performance results in the following sec?on. 

4.2.1 The Extended Copying Algorithm 

Once marking has completed for the upper part of new space, copying has completed for the lower 

part. Compaction can be then be performed for the upper part. 

It is straightforward to interweave marking and copying, since both algorithms proceed the 

same way, by traversing rec~rsively a data structure. Our implementation uses both a stack for 
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WINDOW SIZE mark & compact mark & copy speedup 

(KBYTES) average 90 percentile copy mode average 90 percentile 

16 7.68 1.01% 42.2% 7.30 1.41% 1.05 

32 5.36 0.91% 34.7% 4.97 1.82% 1.08 

64 4.57 1.09% 23.3% 4.38 1.73% 1.04 

128 4.06 1.20% 20.9% 3.80 1.45% 1.07 

256 3.63 1.00% 12.7% 3.56 1.66% 1.02 

512 3.13 0.70% 14.3% 2.96 1.81% 1.06 

1024 2.97 0.75% 1.6% 2.92 2.96% 1.01 

2048 1.99 0.99% 0.0% 2.04 2.77% 0.97 

Table 6: Mark and Copy over Mark and Compact: Speedup 

recursive marking, and Cheney's algorithm queue for copying. Processing a reference to new space 

is completed when both the stack and the queue are empty. 

It is no longer possible in general to skip untyped pointers, as in the case the entire new space 

is above the topmost choice point. To avoid copying a. structure or a list cell twice, we need now 

to delay the processing of untyped pointers pointing into the lower part of new space. Only the 

copying of the cell referenced by an untyped pointer is delayed. If this cell contain a typed pointer 

to a Prolog object, this object is copied and the pointer is relocated without delaying. 

With virtual backtracking, it is necessary to ensure that cells which copied is delayed are 

marked when first visited. The reason is that virtual backtracking relies on the fact that the 

garbage collector marks every object accessible from states Sk, ... , Sn before resetting all bindings 

made after Sk to unmarked objects, and breaks down if marking of some cells is delayed. 

4.2.2 Performance 

The algorithm described previously has more overhead than the simple, fast copying algorithm we 

introduced in the previous section. The main performance degradation comes from the overhead of 

deciding whether a pointer to new space points into the lower part or the upper part. We estimate 

the performance degradation to be-of the order of 10%. 

The other main factor which determines the overall performance of our enhanced algorithm is 

the percentage of cells which are collected with the copying algorithm. This percentage needs to be 

relatively high for us to be able to obtain a significant speedup (this is an instance of application 

of Amdhal's law [Amd67]). Unfortunately, this percentage decreases with the window size. For 

large window sizes, mark and compact may indeed be faster than mark and copy due to the extra 

overhead inherent to the mark and copy approach. 

The experimental data confirms this analysis, as displayed in table 6. Our data have been 

obtained with the COMPILER benchmark described in section 2.2. 

(The poor performance of the mark and copy algorithm on the COMPILER benchmark, which 
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I PROGRAMS II Quintus run time I GC cpu time I ratio I 
boyer 16.1 2.3 14.2% 

compiler 82.6 3.6 4.4% 

quicksort 85.5 8.6 10.1% 

Table 7: GC Cputime Overhead 

is an essentially deterministic program, is surprising. Closer look at the program indicated that in 

many parts of the program, choice points were not removed a.s early a.s possible.) 

4.3 Overall Performance 

To corroborate our claims of efficiency, we measured the cpu overhead of our garbage collection 

algorithms, for a size of new space of 256KB, a.s compared to the run time of Quintus Prolog of 

the same benchmark. The measurements where taken on a VAX 8600, running Quintus Prolog 1.6. 

They are given in table 7. The measurements are only indicative, since the two implementations 

may not use the same data structure representations. Quintus Prolog wa.s given enough space to 

execute without garbage collection. 

Given the survival rates in table 3, we can interpret these data a.s follows: for the memory 

intensive BOYER. benchmark, the garbage collector increases the size of the global stack by a factor 

of 6.0 for a cpu overhead of 14.2%. For the COMPILER. benchmark, it extends the global stack by a 

factor of 18.5 for a cpu overhead of 4.4%. 

5 Hardware and Operating System Support 

Our algorithm is simple, and does not need any specialized hardware support to run with good 

performance. However, there are some simple primitives that would speed it up if they were made 

available to the program. 

The first and most obvious remark is that the hardware should provide enough general purpose 

registers for the software to be able to permanently allocate the H2, E2 and TR2 pointers in 

registers without forcing the compiler to generate too many spills to memory. We believe that 32 

registers should be enough for that purpose. 

The second hardware feature that will enhance performance is to have stack overflow checks 

done in hardware. This could be done on page boundaries only without affecting performance. In 

other words, this could be implemented by providing basic hardware support for virtual memory 

and putting the responsibility of detecting stack overflow on the operating system. 

Basic hard ware support for virtual memory could also be used by the garbage collector to make 

unnecessary the use of the E2 pointer, and to limit trailing to those bindings which need to be 

undone on backtracking. The operating system could easily be modified to indicate on request to 
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the garbage collector which pages have been modified since the last garbage collection, as suggested 

by Shaw [Sha87]. Only these pages may contain pointers to new space, and thus only these pages 

need to be scanned. 

6 Side Issues 

6.1 Interaction with Virtual Memory 

The interaction between Prolog systems and virtual memory is not as friendly as one might expect. 

One problem originates from the stack allocation mechanism. After a deep failure, or after query 

completion, a large chunk of the global stack is deallocated. Unfortunately, there is usually no way 

to tell the virtual memory system that t:b.e corresponding pages of a deallocated chunk of virtual 

address space can be freed. As a consequence, unnecessary page faults will occur when the next 

query is started. This phenomenon has been studied by Ross and Ramamohanarao [RR86]. Our 

garbage collector, by constantly compacting the data structures of the executing program reduces 

this effect. 

6.2 Applying Copying to Several Choice Point Segments 

One possible generalization of our mark and copy algorithm is to apply copying to more choice 

point segments that just the last one. There are two difficulties with this scheme: the first one is 

that we cannot determine the final address of an object living in a choice point segment without 

having completed the garbage collection of all the segments under it. Copying can still be used, 

but a second pass is then required on the survivors as well as on base space to relocate the objects 

to their final position, making copying less attractive. 

The second difficulty is that the algorithm needs to know into which choice point segment a 

given pointer points. This induces an extra cost of the order of (1 +log cp), where cp is the number 

of choice point segments garbage collected by copying. For these two reasons, we do not think that 

this approach can lead to any significant speedup over our basic mark and compact algorithm. 

6.3 Choosing the Size of New Space 

Using too large a new space will cause poor locality, as illustrated in table 4. On the other hand, 

using too small a new space will increase the survival rate and cpu time consumed by the garbage 

collector as. illustrated in table 3 and table 7. The right compromise is system dependent. Some of 

our previous experiments indicated as adequate a value of 32KB for mainframe computers, 256KB 

to 512KB for workstations. There is no difficulty in letting the programmer adjust the size of new 

space to his or her specific needs. 
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6.4 Marking Bits vs. Marking Table 

It is entirely possible to implement our algorithm using marking bits. Only one bit per word is 

necessary. In fact, our first implementation was designed that way. In the present implementation, 

we experimented with the use of a marking table. The use of a marking table is made possible by 

the fact that the size of new space is fixed. Since our implementation was targeted towards 32-bit 

word, byte-addressable general-purpose machines, we decided to use one byte of mark per word in 

new space. This causes a space overhead of ~ of the size new space, but allows faster access to 

the marks. 

The overhead of initializing the mark table can be asymptotically reduced by a factor of 255 

by using a rotating mark, incremented at each consecutive call to the garbage collector, in the 

sequence (1, ... , 255, 1). 

· 6.5 Virtual Backtracking 

We implemented virtual backtracking in all of our algorithms. We basically used the scheme 

described in [AHS87]. The main difference is that our scheme does not mark the environments to 

keep track of previous visits during the marking phase. 

It is possible to maintain one extra environment pointer to determine which part of a given 

environment has already been visited. As the environment chain protected by a given choice point 

is visited, this pointer is set to point to the top of the chain of the previous choice point. It is 

moved down the environment stack to the last environment-in its chain before the environment 

where the two chains merge. We suppose the Prolog system allows us to determine the size of an 

environment as viewed by any of its children by looking at some fixed offset of the return address 

saved in the child environment. This condition is fulfilled in the WAM. 

Our experiments with virtual backtracking were disappointing, as we did not find any advantage 

in using it for most of our benchmarks. Only with CHAT and a new space size of 4KB we were 

able to obtain some improvement, with a very high survival rate of 80.5% was somewhat reduced 

to 75.1% by virtual backtracking; with a size of 8KB, the garbage collector was not even called. 

Our conclusion is that we did not find sufficient evidence that the extra complexity of virtual 

backtracking is worth implementing, with the usual caveat that we only check on a few large 

programs. 

6.6 Trailing every Binding 

Trailing every binding does not necessarily cause overhead. Whether it does depends on two factors: 

the relative cost of doing the trailing and of checking whether it is necessary to trail; the proportion 

of trails which can be avoided at binding time. On many machines, checking will be more expensive 

than trailing. 

In [TD87], Touati and Despain made some measurements on the proportion of trails which can 

be avoided at binding time. The proportion varied widely from benchmark to benchmark, but were 
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found between 30% to 70% for most benchmarks. The surviving tra.il entries will have to be checked 

a. second time during garbage collection. It may be more efficient to delay the check on tra.il entries 

by trailing every binding, and recovering the storage on garbage collection. As the data in table 3 

indicate, at garbage collection time we can predict the output of the check with high accuracy. 

7 Comparison with Previous Work 

The first attempt in using the ideas from generation scavenging was [PB85). Their approach was 

based on choice point segments. For each choice point, they allocated a different logical segment 

of memory, and used this choice point segment as a unit to perform garbage collection. We believe 

that this scheme is more complex than ours, and more disruptive of the basic WAM organization. 

Unfortunately, the authors do not give performance data. 

The first study to notice that garbage collecting above the topmost choice point is significantly 

simpler than the general case was [BM86). The main difference between theirs and ours is the trap 

mechanism: ours is automatic, determined dynamically by window overflow; theirs requires the 

intervention of the programmer. 

Several Prolog implementations [BBCT86,NI86,AHS87] have used the pointer reversal tech­

niques introduced by [Mor78). The most recent WAM garbage collector we are aware of was 

described in (AHS87). Though the authors are aware of the fact that partial garbage collection per­

forms much better than exhaustive garbage collection, they do not propose any scheme to exploit 

it. Moreover, their design is still based on compaction algorithms that do not use extra memory 

space, which are more complex, and, we believe, slower than ours. 

8 Conclusion and Future Work 

We designed and implemented a Prolog garbage collector than displays good locality and high cpu 

performance. We modified our Prolog implementation to allocate new objects a.t the top of the 

global stack address space, in an area of fixed size. By calling the garbage collector each time 

this area overflows, we were able to ensure good locality. By making use of copying algorithms 

rather than marking and compacting algorithms on appropriate parts of the area to be garbage col­

lected, we were able to significantly improve the cpu performance of our algorithm on deterministic 

programs. We were disappointed with our experience with virtual backtracking, where the extra 

implementation complexity does not seem to pay off. 

Future work will include the assessment of multiple generation schemes, as well as the study of 

the relationship between garbage collection and the dynamic resizing of stacks as originally done 

in DEC-10 Prolog [WP77). 
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wed Aug 24 16:53:41 1988 1 

/* Copyright Herve' Touati, 1988, Aquarius Project, UC Berkeley */ 

/* 

1-------------------------------------- <- BO 
I 1 Choice Point Stack 
I 
1-----------------1-------------------- <- B 
I \1/ 
I 
I 
I /1\ 
1-----------------1-------------------- <- E 
I 
I Environment Stack 
I <- EO 

1-------------------------------------- <- HMAXHARD 
I <- HMAXSOFT 
1 New Space 
I <- HMIN 

Marking Area 

-------------------------------------- <- MKMIN 
<- TRO 

Trail Stack 

-----------------1-------------------- <- TR 
\1/ 

/I\ 
-----------------1-------------------- <- H2 

Global Stack 
I 
1-------------------------------------- <- HO 

*I 



memory.h, page 1 

/*Copyright HeNe' Touati, 1988, Aquarius Project, UC Berkeley*/ 

extern CeiiPtr S; 
extern CeiiPtr BO; 
extern CeiiPtr B; 
extern CeiiPtr EO; 
extern CeiiPtr E; 
extern CeiiPtr TR; 
extern CeiiPtr TRO; 
extern CeiiPtr HO; 
extern CeiiPtr H; 
extern CeiiPtr R; 
extern CeiiPtr RO; 
extern lnstrPtr PO; 
extern lnstrPtr P; 

#ifdef WITH GC 
extern CeiiPtr H2; 
extern CeiiPtr TR2; 
extern CeiiPtr E2; 
extern CeiiPtr HMIN; 
extern CeiiPtr HMAXSOFT; 
extern CeiiPtr HMAXHARD; 
const lnt HMAX_SECURITY = 256; 
extern unsigned char* MKMIN; 
#end if 

r points to an escape that signals successful termination •; 
extern lnstrPtr CPO; 
r points to a fail instruction ·; 
extern lnstrPtr FPO; 
r points to an escape that signals unsuccessful termination *I 
extern lnstrPtr NPO; 
r points to the metaca/1 escape *I 
extern lnstrPtr MPO; 
extern lnt next_instruction; 
enum { 
#define use(Name,ID,Coeff,Reg,Type)\ 

10, 
~ndude"rnernory sizes.h" 
#undefuse -

LAST_SIZE 
} ; 

extern lnt memory_sizesO; 
extern Cell NIL; 
extern Cell LIST _FUNCTOR; 

class Memory { 
public: 
void init(); 
StringTable* ST; 
Memory(StringTable& table); 
void allocate(); 

} ; 

#define NUMBER OF REGISTERS 8 
extern Cell XD; - -

r layout of an environment *I 
r B E P Y1 Y2 Y3 ... •; 
/*-3 -2 -1 0 1 2 */ 
enum { 

B_ENV _OFFSET • -3, 
E_ENV _OFFSET=- -2, 



memory.h, page 2 

P ENV OFFSET • -1, 
Y1 ENV OFFSET • 0, - -
}; 

r position of E above the top of the stack when an env is created "I 
enum { 

E_TOP _OFFSET .. 3 
} ; 

r Layout of a choice point •1 
r E H TR P SIZE X1 X2 X3 ... "I 
r 1 2 3 4 s 6 7 s 9 "I 
r the CP stack grows donwards, so Xi are the first pushed on the stack "I 
r and B points at the top of the stack "I 
r A is the top of the environment stack •1 
r always equals to E except for those stupid intra-clause choice "I 
r points ·1 
enum { 

E CP OFFSET • 1, 
H-CP-OFFSET,. 2, 
TR_CP _OFFSET- 3, 
P CP OFFSET • 4, 
SiZE CP OFFSET • 5, 
X1_C-P _OFFSET= 6, 
FIXED_CP _SIZE • 5 
} ; 
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i Copyright Herve· Touati, Aquarius Project, UC Berkeley •; 

extern void mark_from_base(Cell*): 
extern void mark_from_base_sweep(Cell*); 
extern void copy_from_base(Cell*); 

struct UpStack { 
Cell* sp; 
Cell* spO; 
void init(Cell* p) {spO .. sp = p;} 
Cell* bottom() {return spO;} 
Cell* top() {return sp;} 
void push(Cell* val) {*sp++ = cell(val);} 
Cell* pop() {return cellp(*-sp);} 
int nonempty() {return (sp > spO);} 

} ; 

struct DownStack { 
Cell* sp; 
Cell* spO; 
void init(Cell* p) {spa .. sp = p;} 
Cell* bottom() {return spO;} 
Cell* top() {return sp;} 
void push(Cell* val) {*sp-- = cell(val);} 
Cell* pop() {return cellp(*++sp);} 
lnt nonempty() {return (sp < spO);} 

} ; 

i basic data structure to implement Cheney's copy algorithm *I 
struct CopyStack { 

Cell* first; 
Cell* second; 
void init(Cell* p) {first = second = p;} 
Cell* top() {return first;} 
void push(Cell val) {*first++= val;} 
Cell* pop() {return second++:} 
lnt nonempty() {return (first> second);} 

} ; 

inline Cell* max(Cell* a, Cell* b) 
{ 

return (a> b) ? a : b; 
} 

inline Cell* min(Cell* a, Cell* b) 
{ 

return (a< b) ? a : b; 
} 

extern void init_stats(); 
extern void display_stat1(char*, lnt, lnt)~ 
extern void init_marking_table(): 
extern CeiiPtr 82, HMIDDLE; 
extern unsigned char MARK; 

i UTILITIES */ 

inline int to_new_space(Cell* p) 
{return (p <H) && (p >-= HMIN);} 

inline int pointer_to_new(Cell val) 
{return (get_tag(val) != TAGCONST && to_new_space(addr(val)));} 

i better be sure p points to new space •; 
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inline Cell* reloc_addr(Cell* p) 
{ return cellp(*p);} 

inline void set_reloc_addr(Cell* p, Cell* new_addr) 
{ *p. cell(new_addr);} 

inline Cell check_and_relocate(Cell var) 
{ 

lnt tag- get_tag(var); 
Cell* ptr = addr(var): 
If (tag!· TAGCONST && to_new_space(ptr)) 

return makeJ)tr(tag, reloc_addr(ptr)); 
else 

return var; 

/* suppose that p is an address to a location in new space *I 
/*please do the check!! note: new space contain a relocation table. *I 
overload relocate; 
inline Cell relocate(Cell var) 
{return makeJ)tr(get_tag(var), reloc_addr(addr(var)));} 

inline Cell relocate(lnt tag, Cell* p) 
{return makeJ)tr(tag, reloc_addr(p));} 

inline void mark(Cell* p) 
{ MKMIN[p- HMIN]"' MARK;} 

inline lnt marked(Cell* p) 
{return (MKMIN[p- HMIN] •• MARK);} 

inline lnt unmarked(Cell* p) 
{return (MKMIN[p- HMIN] !·MARK);} 

extern void store_regs_in_env(): 
extern void restore_top_env(): 

struct Env { 
Cell* e; 
lnt size; 
tnt already_treated; 
void next() { 
size= instrp(e[P _ENV_OFFSET])->arg2; /* P points to the call instr *I 
already_treated- 0; 
e = cellp(e[E_ENV_OFFSET]); 

} 
Env() {} 
Env(Cell* E) {init(E) ;} 
void init(Cell* E) { 

e = E; 
next(); 

} 
void treated(lnt n) {already_treated = n;} 
void mark(); 
void fast_ copy(); 
void mark_sweep(); 
void update(); 

} ; 

struct ChoiceRecord { 
Cell* tr; 
Cell* e; 
Cell* h; 

}; 
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struct Choice { 
Cell* b; 
Env already_done; 
Env preserved; 
Cell* tr; 
Choice(Cell*, Cell*); 
void next() { 

b = b + FIXED_CP _SIZE+ b[SIZE_CP _OFFSET]; 
preserved.init(cellp(b[E_CP _OFFSET])); 

} 
int last() { return (b >= 82); } 
void mark(); 
void mark_sweep(); 
void virtual_backtrack(); 
void virtual_backtrack_sweep(); 
void mark_preserved_envs(); 
void mark_preserved_envs_sweep(); 
void update(); 
void update_preserved_envs(); 

}; 

extern void cp_to_cp_forward(); 
extern void cp_to_cp_backward(); 

r The TRAIL STACK*/ 

enum { 
TRAIL_SKIP, 
TRAIL_KEEP, 
TRAIL_RELOC, 
TRAIL IND RELOC, 
TRAIL-COPY RELOC, - -
TRAIL_MARK 
} ; 

r sort of a cp cache, with some control info. •; 
r the main point is to make sure that the TR entries are updated "I 
r after the former values are read *I 
struct TraiiCP { 

Cell* b; 
Cell* next b; 
Cell* last_b; 
Cell* tr; 
Cell* next tr; 
Cell* e; -
Cell* h; 
TraiiCP(Cell* 82, Cell* 8) {b = 82; last_b • 8; init();} 
lnt nonempty() {return (b > last_b);} 
void init() {next_b- b; 

next_tr = cellp(b(TR_CP _OFFSET]); 
next();} 

void next() {b = next_b; 
e = cellp(b[E_CP _OFFSET]); 
h == cellp(b[H_CP _OFFSET]); 
tr ... next_tr; 
next_b = b- (FIXED_CP _SIZE+ b[SIZE_CP _OFFSET]); 
next_tr .. cellp(next_b(TR_CP _OFFSET]);} 

void update_tr(Cell* tr) { next_b[TR_CP _OFFSET]= cell(tr);} 
lnt pass1_action(Cell* ptr) { 

If (ptr >= e II (ptr < EO && ptr >=h)) 
return TRAIL SKIP; 

else If (ptr >= E211 (ptr <EO && ptr >= HMIN)) 
return TRAIL_KEEP; 
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else 
return (pointer_to_new(*ptr))? TRAIL_MARK: TRAIL_KEEP; 

} 
lnt pass2_action(Cell* ptr) { 

#ifdef WITH VIRTUAL BACK 
If (*ptr •• -make_ptr{TAGREF,ptr)) 

return TRAIL_SKIP; 
else If (to_new_space(ptr)) { 

#else 
If (to_new_space(ptr)) { 

#end if 
If (unmarked(ptr)) 

return TRAIL_SKIP; 
else 

return (ptr >• HMIDDLE) ? TRAIL_RELOC :TRAIL_ COPY _RELOC; 
} else 
return TRAIL_IND_RELOC; 

} 
lnt pass2_action_sweep(Cell* ptr) { 

#ifdef WITH VIRTUAL BACK 
If (*ptr =• -make_ptr(rAGREF,ptr)) 

return TRAIL_SKIP; 
else If (to_new_space(ptr)) { 

#else 
If (to_new_space(ptr)) { 

#end if 

} 
} ; 

If (unmarked(ptr)) 
return TRAIL_SKIP; 

else 
return TRAIL_RELOC; 

} else 
return TRAIL_IND_RELOC; 

extern void gccontrol_pass2(); 

enum { 
SHOULD_COPY, 
SHOULD_MARK, 
SHOULD_ CHECK_MARK, 
SHOULD RELOC, 
SHOULD=NEITHER, 
SHOULD_LEAVE 
} ; 

extern void mark_compact(); 
extern void fast_ copy(); 
extern struct rusage gc_rusage; 
extern lnt getrusage( ... ); 
extern CeJJPtr H_entry_value; 
extern CeJJPtr H2_entry_value; 
extern CeiiPtr TR_entry_value; 
extern CeiiPtr TR2_entry_value; 

extern void gc_init(); 
extern void global_sweep(); 
extern void restore_cps(); 
extern ChoiceRecord SAVED CP; 
extern void gctrail_pass 11 (); -
extern void compute_stats(); 

• I 



fast_copy.c, page 1 

/"Copyright Herve' Touati, Aquarius Project, UC Berkeley"! 

#ifdef WITH_GC 
#include <stream.h> 
#include <Sysltypes.h> 
#include <Sysltime.h> 
#include <sys/resource.h> 
#include "tags. h" 
#include "instr. h" 
mndude"hash table.h" 
#include "string table. h" 
#include "scan . h" 
mndude"inst args.h" 
#include "inst -table. h" 
#include "memory. h" 
mndude"basics.h" 
#~dude"top level.h" 
#include "gc. h" 
#include "mark_ copy . h" 

!"LOCAL DECLARATIONS"! 

static DownStack FAST MARK STACK; 
static CopyStack FAST_=-coPY-=-STACK; 

/"if does not point directly to new space, either it dereferences to "! 
/" a pointer to new space that belongs to some living environment, "! 
/" that will be traced later on, or to some old environment, which "I 
!" modification would then have been trailed. Therefore, there is no "! 
/"need to dereference "! 
void Env::tast_copy() 
{ 
#ifdef WITH VIRTUAL BACK 

Cell* y. e ~ Y1_ENV=OFFSET + already_treated; 
Cell* yO= e + Y1_ENV_OFFSET +size; 
for(; y <yO; Y++) { 

} 

Cell* ptr = y; 
Cell val = *ptr; 
while (get_ tag( val) == T AGREF && addr(val) >= EO && addr(val) != ptr) { 

ptr = addr(val); 
val= *ptr; 

} 
if (get_tag(val) ==• T AGCONST) continue; 
If (to_new_space(addr(val))) 
copy _from_base(ptr); 

#else 
Cell* y = e + Y1_ENV_OFFSET + already_treated; 
Cell* yO= e + Y1_ENV_OFFSET +size; 
for(; y <yO; Y++) { 

If (get_tag("y) == T AGCONST) continue; 
If (to_new_space(addr(*y))) 

copy _from_base(y); 
} 

#end if 
} 

/"Needs to make sure that no unbound variable is left in registers ·; 
void fast_copy_restore_top_env() 
{ 

Cell* PreviousE = cellp(E[E_ENV_OFFSET]); 
lnt arity = instrp(E[P _ENV_OFFSET])->arg2; 
E = PreviousE; 
for (lnt i = 0; i < arity; i++) { 
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X{ij • deref(E[Y1_ENV_OFFSET + ij); 
If (X[ij- make_ptr(TAGREF, &E[Y1_ENV_OFFSET + i])) { 

} 

} 
} 

Cell new_var • make_ptr(TAGREF, FAST_COPY_STACK.top()); 
FAST_COPY_STACK.push(new_var); 
X[ij. E[Y1_ENV_OFFSET + ij = new_var; 

/* CHOICE POINTS *I 

void setup_cps_fast_copy() 
{ 
!* treat the case of the cps such that 8.h - HMIN now ·; 
Cell* b = 82 .. 8; 
while (cellp(b[H_CP _OFFSET]) =• HMIN) { 

b[H_CP _OFFSET] • ceii(H2); 
b +• FIXED_CP _SIZE+ b[SIZE_CP _OFFSET]; 

} 

;• creates a topmost choice point •; 
8 -= FIXED CP SIZE; 
8[E_CP _OFFSET]= ceii(E); 
8[H_CP _OFFSET]= ceii(H); 
8[TR_CP _OFFSET]= ceii(TR); 
8[P _CP _OFFSET]= 0; /*unused*/ 
8[SIZE_CP _OFFSET] • 0; 

/*set 82 to be above E2, TR2 as well; save previous contents *I 
SAVED_CP.tr • cellp(82[TR_CP _OFFSET]); 
SAVED_CP.e • cellp(82[E_CP _OFFSET]); 
SAVED_CP.h • cellp(82[H_CP _OFFSET]); 
TR2 =- min(TR2, SAVED_CP.tr); 
E2 = max(E2, SAVED_CP.e); 
82[TR_CP _OFFSET]= ceii(TR2); 
82[E_CP _OFFSET]= ceii(E2); 
82[H_CP _OFFSET]= ceii(HMIN); 

} 

void restore_cps_fast_copy() 
{ 
I* restore 82 to its initial contents •; 
82[TR_CP _OFFSET] .. ceii(SAVED_CP.tr); 
82[E_CP _OFFSET]= ceii(SAVED_CP.e); 
82[H_CP _OFFSET]= ceii(SAVED_CP.h); 

I* compute the new values of H, H2, TR, TR2, E2 *I 
H = HMIN; 
H2 = FAST_COPY_STACK.top(); 
TR = TR2 .. cellp(8[TR_CP _OFFSET]); 
E2= E; 

I* remove the dummy topmost choice point •; 
8 += FIXED_CP _SIZE; 

} 

I* takes advantage of the fact that the tag bit is in the lower bits •; 
void fast_copy_trail_1() 
{ 

register Cell* trO = cellp(8[TR_CP _OFFSET]); 
register Cell* tr = cellp(82[TR_CP _OFFSET]); 
register Cell* copy_tr .. tr; 
register Cell* h .. cellp(82[H_CP _OFFSET]); 
register Cell* e = cellp(82[E_CP _OFFSET]); 
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for(; tr > trO; tr-) { 

} 

If (cellp(*tr) < h II (cellp(*tr) < e && cellp(*tr) >• EO)) 
•copy_tr-- •tr; 

B[TR_CP _OFFSET] • cell(copy_tr); 
} 

void fast_copy_trail_2() 
{ 

register Cell* trO = cellp(B[TR_CP _OFFSET]); 
register Cell* tr • cellp(B2[TR_CP _OFFSET]); 
for(; tr > trO; tr--) { 

} 
} 

register Cell* ptr = addr(*tr); 
If (ptr >= E2 II (ptr <EO && ptr >• HMIN)) 

continue; 
If (pointer_to_new(*ptr)) 
copy _from_base(ptr); 

void fast_copy_trail() 
{ 
fast_ copy _trail_ 1 (); 
fast_copy _trail_2(); 

} 

I" control stacks ·; 

I" we do the traversal of the environment stack and the choice point •; 
I" stack together. that way we can avoid having to traverse the •; 
/" records twice, and we do not have to use marking nor any extra ·; 
I" space: just two extra structures. •; 
I" will be quite easy to add virtual backtracking inside this routine •; 
/" it works as follows: first visit all envs above the topmost choice •; 
I" point. then visit all envs that are above the next living env. two •; 
/" loops alternating, one visiting next living envs, one visiting the *I 
I* next preserved envs. if a given env is shared, its living part is ·; 
I" first entirely marked, then we wait until the last choice point *I 
I" that preserved that env and mark the part that is preserved. *I 

void fast_copy_control() 
{ 
I" only living objects in that case •; 
Env env(E); 
for(;;) { 

} 
} 

If (env.e <= E2) { 
if (env.e == E2) 

env.fast_copy(); 
break; 

} 
env.fast_copy(): 
env.next(); 

I" we save and later restore the topmost entry in the COPY_ STACK at •; 
I" the time this routine is called. This is to simplify the algorithm •; 
;• and avoid copying many times. Here, the main difficulty is the •; 
I" correct treatment of refs. Since the order does not matter any ·; 
I" more here, we can be even a bit more efficient. Each time we ·; 
I" encounter a ref, we dereference it. If we get a constant, we just •; 
I" copy the constant into the origin. If we get an unbound variable, •; 
I" we rebind it backwards, and set the original pointer to unbound. •; 
;• This may create pointers from new to base space for a while, so we •; 
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r should be careful. The idea is to always dereference tully, no •; 
r matter what, and look at where the result is. Only stop when •; 
r marked. Using the FAST_MARK_STACK helps a lot, though it cannot be •; 
r deeper than one element. *I 

void copy_from_base(Celr p) 
{ 

FAST _MARK_ST ACK.init(B); 
FAST _MARK_ST ACK.push(p); 
for(;;) { 

Cell* var; 
If (FAST_COPY_STACK.nonempty()) 
var• FAST_COPY_STACK.pop(); 

else If (FAST_MARK_STACK.nonempty()) 
var = FAST _MARK_ST ACK.pop(); 

else 
break; 

switch (get_tag(*var)) { 
case T AGCONST: 

break; 
case T AGREF: 
{ 

Cell* ptr = addr(*var); 
If (ptr < HMIN II ptr >• EO) { 

If (*var •• *ptr) { 
If (ptr > var) 

*ptr • •var - make_ptr(T AGREF, var); 
} else { 

*var • *ptr; 
FAST _MARK_STACK.push(var); 

} 
} else If (marked(ptr)) { 
•var = make_ptr(TAGREF, reloc_addr(ptr)); 

} else If (*var ... *ptr) { 
*ptr = •var = make_ptr(TAGREF, var); 

} else { 
*var .. *ptr; 
FAST _MARK_ST ACK.push(var); 

} 
} 
break; 

case T AGLIST: 
{ 

Cell* list • addr(*var); 
If (list >• HMIN) { 

} 
} 
break; 

If (marked(list)) { 
*var • make_ptr(TAGLIST, reloc_addr(list)); 

} else { 
*var• make_ptr(TAGLIST, FAST_COPY_STACK.top()); 
for (lnt i - 0; i < 2; i++) { 

} 
} 

mark(list + i); 
Cell* dest = FAST_COPY_STACK.top(); 
FAST _COPY _STACK.push(list[ij); 
set_reloc_addr(list + i, dest); 

case T AGSTRUCT: 
{ 

Cell* str = addr(*var); 
if (str >= HMIN) { 
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} 

} 
} 
break; 

} 

If (marked(str)) { 
*var • make__ptr(TAGSTRUCT, reloc_addr(str)); 

} else { 
*var • make__ptr(TAGSTRUCT, FAST_COPY_STACK.top()); 
lnt iO = get_int(str{1]) + 2; 
for (lnt i ... 0; i < iO; i++) { 

} 
} 

mark(str + i); 
Cell* dest = FAST_COPY_STACK.top(); 
FAST_COPY_STACK.push(str{D); 
set_reloc_addr(str + i, dest); 

} 

r Basic lnitializations "I 
void tast_copy_gc_init() 
{ 
#ifdef WITH VIRTUAL BACK 

MARK= 2 * ((GC_COUNTER% 127) + 1); r values from 2 to 254 "I 
#else 

MARK = (GC_COUNTER % 255) + 1; r values from 1 to 255 "I 
#end if 

GC_COUNTER++; 
FAST_COPY _STACK.init(H2); 

} 

r Collect some data "I 
r some basic data: mark(scan,recovered), copy(scan,recovered), cputime *I 
r the data are given in number of cells, milliseconds. "I 

void fast_copy_stat~() 
{ 

gc_scanned += H_entry_value- HMIN; 
gc_copy_scanned += H_entry_value- HMIN; 
gc_survivors += H2- H2_entry_value; 
tr_scanned += TR2_entry_value- TR_entry_value; 
tr_survivors += TR2_entry_value- TR; 
If (DISPLAY _GC) { 
cout << "gc ( "; 
display_stat1("copy", H_entry_value- HMIN, H2- H2_entry_value); 
display_stat1 ("tr", TR2_entry_value-TR_entry_value, TR2_entry_value-TR); 

} 
} 

r top level *I 
/"assumes that GC_DOES_COPY. Should also work if everything is above "I 
r the topmost choice point, though slower than the special purpose "I 
I" fast_copy garbage collector *I 

void fast_copy() 
{ 

init_stats(); 
store_regs_in_env(); 
setup_cps_fast_copy(); 
fast_ copy _gc_init(); 
init_marking_table(); 
fast_copy _trail(); 
fast_copy _control(); 
fast_ copy _restore_top_env(); 
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} 

restore_cps_fast_copy(): 
fast_copy _stats(): 
compute_stats(): 

#end if 
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r Copyright Herve' Touati, Aquarius Project, UC Berkeley •; 

#ifdef WITH_GC 
#include <Stream.h> 
#include <Sysltypes.h> 
#include <Sysltime.h> 
#include <sys/resource.h> 
#include "tags. h" 
#include "instr . h" 
#~dude"hash table.h" 
#include "string table.h" 
#include "scan . h" 
~ndude"inst_args.h" 
~ndude"inst table.h" 
#include "memory . h" 
#include "basics. h" 
~ndude"top level.h" 
#include "gc. h" 
#include "mark_ copy . h" 

r ENVS *I 

void Env::mark_sweep() 
{ 
#ifdef WITH VIRTUAL BACK 

Cell* y = e ~ Y1_ENv:=oFFSET + already_treated; 
Cell* yO= e + Y1_ENV_OFFSET +size; 
for(; y <yO; Y++) { 

} 

Cell* ptr • y; 
Cell val = *ptr; 
while (get_tag(val) == T AGREF && addr(val) >= E2 && addr(val) != ptr) { 

ptr = addr(val); 
val • *ptr: 

} 
if (get_tag(val) •= TAGCONST) continue; 
if (to_new_space(addr(val))) 

mark_from_base_sweep(ptr); 

#else 
Cell* y"" e + Y1_ENV_OFFSET + already_treated; 
Cell* yO= e + Y1_ENV_OFFSET +size; 
for(; y <yO; Y++) { 

if (get_tag(*y) == T AGCONST) continue; 
if (to_new_space(addr(*y))) 

mark_from_base_sweep(y); 
} 

#end if 
} 

r CHOICE POINTS *I 

r creates a choice point at the top that is above everything else. *I 
r It is easier to code gctrail that way: don't have to worry about *I 
r boundary conditions any more. *I 
void setup_cps_JJass1_sweep() 
{ 
r creates a topmost choice point *I 
B -= FIXED_CP _SIZE; 
B(E_CP _OFFSET]= ceii(E); 
B[H_CP _OFFSET]= ceii(H); 
B(TR_CP _OFFSET] = ceii(TR); 
B[P _CP _OFFSET]= 0; r unused *I 
B[SIZE_CP _OFFSET] = 0; 
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r find 8MIDDLE and 82 */ 
Cell* b • 8; 
while (cellp(b(H_CP _OFFSET]) > HMIN) { 

b +• FIXED_CP _SIZE+ b[SIZE_CP _OFFSET]; 
} 
82· b; 

r treat the case of the cps under 82 such that 8.h == HMIN now •; 
while (cellp(b[H_CP _OFFSET]) - HMIN) { 

b[H_CP _OFFSET]= ceii(H2); 
b +• FIXED_CP _SIZE+ b[SIZE_CP _OFFSET]; 

} 

r set 82 to be above TR2 as well; save previous contents *I 
SAVED_CP.tr = cellp(82[TR_CP _OFFSET]); 
SAVED_CP.e • cellp(82[E_CP _OFFSET]); 
SAVED_CP.h • cellp(82(H_CP _OFFSET]); 
TR2 = min(TR2, SAVED_CP.tr); 
E2 = max(E2, SAVED_CP.e); 
82[TR_CP _OFFSET] .. ceii(TR2); 
82[E_CP _OFFSET] • ceii(E2); 
82[H_CP _OFFSET] • ceii(H2); 

r just to limit the modifications with the mark_copy case •; 
HMIDDLE .. HMIN; 

} 

r just replace unmarked2 by unmarked *I 
void Choice::virtual_backtrack_sweep() 
{ 
#ifdef WITH_ VIRTUAL_8ACK 

Cell* varO .. tr; 
Cell* var = cellp(b[TR_CP _OFFSET]); 
tr .. var; 
for(; var > varO; var-) { 

Cell* ptr = addr(*var); 
If (ptr >= EO) { 

Cell val = *ptr; 
while (get_tag(val) •• TAGREF && addr(val) >= EO && addr(val) l= ptr) { 

ptr = addr(val); 
val- *ptr; 

} 
If (pointer_to_new(*ptr) && unmarked(addr(*ptr))) 

*addr(*var) .. *var; 
} else If (ptr >• HMIN) { 

If (unmarked(ptr)) 

} 
} 

#end if 
} 

*ptr = *var: 

void Choice::mark_sweep() 
{ 
#ifdef WITH_ VIRTUAL_8ACK 

virtual_backtrack_sweep(); 
Cell* x = b + X1_CP _OFFSET; 
Cell* xo = x + b[SIZE_CP _OFFSET]; 
for(; x < xO; X++) { 

Cell* ptr = x; 
Cell val = *ptr: 
while (get_ tag( val) == T AGREF && addr(val) >= E2 && addr(val) f· ptr) { 

ptr = addr(val); 
val= *ptr; 



mark_compact.c, page 3 

} 

} 
If (get_tag(val) =-= TAGCONST) continue; 
If (to_new_space(addr(val))) 

mark_from_base_sweep(ptr); 

#else 
Cell" x ,. b + X1 CP OFFSET; 
Cell" xO. x + b[SIZE_CP _OFFSET]; 
for(; x < xO; X++) { 

If (get_tag("x) =-• T AGCONST) continue; 
If (to_new_space(addr(*x))) 

mark_from_base_sweep(x); 
} 

#end if 
} 

r THE TRAIL STACK"! 

void gctrail_pass12_sweep() 
{ 

register Cell* trO .. cellp(B[TR_CP _OFFSET]); 
register Cell" tr = cellp(B2[TR_CP _OFFSET]); 
for(; tr > trO; tr--) { 

} 
} 

reg lster Cell" ptr = addr(*tr); 
If (ptr >= E2 II (ptr < EO && ptr >= HMIN)) 
continue; 

If (pointer_to_new(*ptr)) 
mark_from_base_sweep(ptr); 

void gctrail_pass1_sweep() 
{ 

gctrail_pass11 (); 
gctrail_pass 12_sweep(); 

} 

void gctrail_pass2_sweep() 
{ 
TraiiCP cp(B2, B); 
Cell* trO = cp.tr; 
Cell* tr • cp.tr; 
Cell* copy_tr = cp.tr; 
while (cp.nonempty()) { 

} 
} 

tr • trO; 
trO = cp.next_tr; 
for(; tr > trO; -tr) { 

Cell* ptr = addr(*tr); 
switch (cp.pass2_action_sweep(ptr)) { 
case TRAIL_SKIP: 

break; 
case TRAIL RELOC: 

*copy.:=tr-- = relocate(TAGREF, ptr); 
break; 

case TRAIL_IND_RELOC: 

} 
} 

*ptr = check_and_relocate(*ptr); 
"copy_tr-- = *tr; 
break.; 

cp.update_tr(copy _tr); 
cp.next(); 
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r control stacks •; 

r just replace marking by sweep marking •; 

void gccontrol_pass1_sweep() 
{ 
r first, take care of living cells •; 
Env env(E): 
for(;;) { 

} 

If (env.e <• E2) { 
If (env.e •• E2) 

env. mark_sweep(): 
break; 

} 
env. mark_sweep(): 
env.next(): 

r now, take care of preseNed cells •; 
Choice cp(E, B): 
for ( ;;) { 

} 
} 

If (cp.last()) break; 
cp.mark_sweep(); 
cp.mark_preserved_ envs_sweep(): 
cp.next(): 

r simple, sweep marking •; 

I* suppose pis a global stack pointer; can't point to env stack *I 
r should be recoded to use a table lookup instead of all those tests *I 

static DownStack MARK_SWEEP _STACK; 
void mark_from_base_sweep(Cell* p) 
{ 

MARK_SWEEP _STACK.init(B); 
MARK_SWEEP _STACK.push(p); 
for(;;) { 

Cell* var: 
If (MARK_SWEEP _STACK.nonempty()) 
var = MARK_SWEEP _STACK.pop(); 

else 
break; 

switch (get_tag(*var)) { 
case T AGCONST: 

break; 
case T AGREF: 

{ 
Cell* ptr = addr(*var); 
If (ptr >• HMIN && unmarked(ptr)) { 

mark(ptr); 
MARK_ SWEEP _ST ACK.push(ptr); 

} 
} 
break: 

case TAGLIST: 
{ 

Cell* list = addr(*var): 
If (list >• HMIN) { 
for (tnt i = O: i < 2: i++) { 

If (unmarked(list + i)) { 
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} 
} 

} 
} 
break; 

} 

mark( list + i); 
MARK_SWEEP _STACK.push(list + i); 

} 

case TAGSTRUCT: 
{ 

Cell! str = addr(*var); 
If (str >• HMIN && unmarked(str)) { 

tnt iO = get_int(str{1]) + 2; 

} 
} 
break; 

} 

for (lnt i = 0; i < 2; i++) 
mark( str + i); 

for (i = 2; i < iO; i++) { 
mark(str + i); 
MARK_SWEEP _STACK.push(str + i); 

} 

void mark_compact_stats() 
{ 

gc_scanned +• H_entry_value- HMIN; 
gc_survivors + .. H2- H2_entry_value; 
tr_scanned +• TR2_entry_value- TR_entry_value; 
tr_survivors +• TR2_entry_value- TR; 
If (DISPLAY_GC) { 

cout << "gc ( "; 
display_stat1("global", H_entry_value- HMIN, H2- H2_entry_value); 
display_stat1("trail ",TR2_entry_value-TR_entry_value, TR2_entry_value-TR); 

} 
} 

void init_marking_table_sweep() 
{ 
#ifdef WITH VIRTUAL BACK 

If (MARK ,;; 2) return; 
#else 

If (MARK != 1) return; 
#end if 

register lnt* p =(tnt*) MKMIN; 
register tnt* pO. HMIN; 
while (p < pO) 

*p++ = 0; 

I* basic initializations •; 

I* need to initialize MARK2 in case this is used with mark_copy •; 
void gc_init_sweep() 
{ 
#ifdef WITH_ VIRTUAL_BACK 

MARK= 2 * ((GC_COUNTER% 127) + 1); /*values from 2 to 254 "! 
#else 

MARK = (GC_COUNTER % 255) + 1; /*values from 1 to 255 "! 
#end if 

GC_COUNTER++; 
} 
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/* top level •; 
/*assumes that GC_DOES_COPY. Should also work if everything is above •; 
/* the topmost choice point, though slower than the special purpose •; 
/* tast_copy garbage collector •; 

void mark_compact() 
{ 

} 

init_stats(); 
store_regs_in_env(); 
setup_cps_pass 1_sweep(); 
gc_init_sweep(); 
init_marking_table_sweep(); 
cp_to_cp_forward(); 
get rail _pass 1_sweep(); 
cp_to_cp_backward(); 
gccontrol_pass 1_sweep(); 
global_sweep(); 
gccontrol_pass2(); 
cp_to_cp_forward(); 
gctrail_pass2_sweep(); 
cp_to_cp_backward(); 
restore_top_env(); 
restore _cps(); 
mark_compact_stats(); 
compute_stats(); 

#end if 
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/*Copyright Herve' Touati, Aquarius Project, UC Berkeley *I 

#ifdef WITH_GC 
#include <Stream.h> 
#include <Sys/types.h> 
#include <Sys/time.h> 
#include <sys/resource.h> 
#include "tags. h" 
#include "instr . h" 
#include "hash table. h" 
#include "string table. h" 
#include "scan. h" 
#include "inst args. h" 
#include "inst-table.h" 
#include "memory. h" 
~nclude"basics.h" 
~nclude"top level.h" 
#include "gc. h" 
#include "mark_copy. h" 

r LOCAL DECLARATIONS */ 

r choice point that separates copying from marking *I 
CeiiPtr BMIDDLE, HMIDDLE, 82; 

r various stacks used during marking *I 
static DownStack MARK_STACK; 
static UpStack REF _STACK; 
static Copy Stack COPY _STACK; 

I* incremented at each GC. Just a counter *I 
lnt GC_COUNTER; 

r the mark used for marking. Equals to GC_COUNTER modulo 255 + 1 *I 
unsigned char MARK; 
#ifdef WITH VIRTUAL BACK 
static unsig-ned char MARK2; 

inline void mark2(Cell* p) 
{ MKMIN[p- HMIN] = (marked(p))? MARK: MARK2;} 

inline int marked2(Cell* p) 
{return (marked(p) II MKMIN[p- HMIN] == MARK2);} 

inline lnt unmarked2(Cell* p) 
{ return (unmarked(p) && MKMIN[p- HMIN] != MARK2); } 

#end if 

I* ENVIRONMENTS and REGISTERS *I 
r creates a new environment at the top of the stack, and saves the *I 
r registers in it. Then put yet another one above it, with nothing *I 
I* in it. Easier to restore than adding the registers to the current *I 
r environment. *I 
static lnstr dummy_instr; 
void store_regs_in_env() 
{ 

int arity = instr_args[ARG_PROC]->get_arity(P->arg1); 
arity = (NUMBER_OF _REGISTERS< arity) ? NUMBER_ OF _REGISTERS : arity; 
dummy_instr.arg2 "' arity; 
for (lnt i = 0; i < arity; i++) 

E[Y1_ENV_OFFSET + ij = X[ij; 
Cell* NewE = E + arity + E_ TOP _OFFSET; 
NewE[B_ENV _OFFSET] = 0; /*unused *I 
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NewE[E_ENV_OFFSET] • ceii(E); 
NewE[P _ENV_OFFSET] • cell(&dummy_instr); 
E = NewE; 

} 

r restore the top of the stack as before the call to store_regs_in_env •; 
void restore_top_env() 
{ 

Cell* PreviousE = cellp(E[E_ENV_OFFSET]); 
lnt arity • instrp(E[P _ENV_OFFSET])->arg2; 
E • PreviousE; 
for (lnt i • 0; i < arity; i++) 

X[ij = E[Y1_ENV_OFFSET + ij; 

r it does not point directly to new space, either it dereterences to •; 
r a pointer to new space that belongs to some living environment, *I 
r that will be traced later on, or to some old environment, which *I 
r modification would then have been trailed. Therefore, there is no *I 
r need to dereference *I 
void Env::mark() 
{ 
#ifdef WITH VIRTUAL BACK 

Cell* y = e ~ Y1_ENv=:oFFSET + already_treated; 
Cell* yO= e + Y1_ENV_OFFSET +size; 
for(; y <yO; Y++) { 

} 

Cell* ptr = y; 
Cell val • *ptr; 
while (get_tag(val) •• TAGREF && addr(val) >• E2 && addr(val) != ptr) { 

ptr = addr(val); 
val= *ptr; 

} 
If (get_tag(val) =• TAGCONSl) continue; 
If (to_new_space(addr(val))) 

mark_from_base(ptr); 

#else 
Cell* y = e + Y1_ENV _OFFSET+ already_treated; 
Cell* yO= e + Y1_ENV_OFFSET +size: 
for(; y <yO; Y++) { 

If (get_tag(*y) =• T AGCONST) continue; 
If (to_new_space(addr(*y))) 

mark_from_base(y): 
} 

#end if 
} 

void Env::update() 
{ 

Cell* y = e + Y1_ENV _OFFSET+ already_treated; 
Cell* yO= e + Y1_ENV_OFFSET +size; 
for(; y <yO; Y++) 
*y = check_and_relocate(*y); 

r CHOICE POINTS */ 

ChoiceRecord SAVED_CP; 

r if less than a threshold, use mark_compact instead *I 
const float COPY_THRESHOLD = 0.2; 

lnt deterministic() 
{ 
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return (cellp(8[H_CP _OFFSET])<'"' HMIN); 
} 

lnt enough_to_copy() 
{ 

Cell* H_THRESHOLD • &HMIN[(Int) ((float) (H-HMIN)*COPY_THRESHOLD)]; 
Cell* b = 8; 

} 

while (cellp(b[H_CP _OFFSET]) > H_ THRESHOLD) 
b +• FIXED_CP _SIZE+ b[SIZE_CP _OFFSET]; 

return (cellp(b[H_CP _OFFSET])<= HMIN); 

r creates a choice point at the top that is above everything else. •; 
r It is easier to code gctrail that way: don't have to worry about •; 
r boundary conditions any more. *I 
void setup_cps_pass1 () 
{ 
r creates a topmost choice point *I 
8 -= FIXED CP SIZE; 
8[E_CP _OFFSET] • ceii(E); 
8[H_CP _OFFSET]= ceii(H); 
8[TR_CP _OFFSET] = ceii(TR); 
8[P _CP _OFFSET] = 0; r unused *I 
8[SIZE_CP _OFFSET] = 0; 

r find 8MIDDLE and 82 *I 
8MIDDLE = 8; 
Cell* b. 8; 
while (cellp(b[H_CP _OFFSET]) > HMIN) { 

8MIDDLE = b; 
b +• FIXED_CP _SIZE+ b[SIZE_CP _OFFSET]; 

} 
82= b; 

I* treat the case of the cps under 82 such that 8.h == HMIN now •; 
while (cellp(b[H_CP _OFFSET]) == HMIN) { 

b[H_CP _OFFSET]= ceii(H2); 
b += FIXED_CP _SIZE+ b[SIZE_CP _OFFSET]; 

} 

r set 82 to be above TR2 as well; save previous contents "'! 
SAVED_CP.tr = cellp(82[TR_CP _OFFSET]); 
SAVED_CP.e = cellp(82[E_CP _OFFSET]); 
SAVED_CP.h "'cellp(82[H_CP _OFFSET]); 
TR2'"' min(TR2, SAVED_CP.tr); 
E2 = max(E2, SAVED_CP.e); 
82[TR_CP _OFFSET]= ceii(TR2); 
82[E_CP _OFFSET]= ceii(E2); 
B2[H_CP _OFFSET]= ceii(HMIN); 

r cache the H entry of 8MIDDLE in a global variable "'! 
HMIDDLE = cellp(BMIDDLE[H_CP _OFFSET]); 

} 

void setup_cps_pass2() 
{ 
r restore 82 to its initial contents *I 
B2[TR_CP _OFFSET]= ceii(SAVED_CP.tr); 
B2[E_CP _OFFSET]= ceii(SAVED_CP.e); 
B2[H_CP _OFFSET]= ceii(SAVED_CP.h); 

r take 8MIDDLE as 82: copied stuff appears as old form now on *I 
82 • BMIDDLE; 
H2 = COPY_STACK.top(); 
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B2[H_CP _OFFSET] • ceii(H2); 

i set 82 to be above TR2 as well; save previous contents •; 
SAVED_CP.tr • cellp(B2[TR_CP _OFFSET]); 
SAVED_CP.e • cellp(B2[E_CP _OFFSET]); 
TR2 • min(TR2, SAVED_CP.tr); 
E2 • max(E2, SAVED_CP.e); 
B2[TR_CP _OFFSET] • ceii(TR2); 
B2[E_CP _OFFSET]= ceii(E2); 

} 

void restore_cps() 
{ 
i restore 82 to its initial contents •; 
B2[TR_CP _OFFSET]= ceii(SAVED_CP.tr); 
B2[E_CP _OFFSET]= ceii(SAVED_CP.e); 

i relocate the H entries to their correct, final position •; 
Cell* b • B; 
while (b < 82) { 

} 

b[H_CP _OFFSET] .. cell(reloc_addr(cellp(b[H_CP _OFFSET]))); 
b +• FIXED_CP _SIZE+ b[SIZE_CP _OFFSET]; 

i compute the new values of H, H2, TR, TR2, E2 •; 
H =HMIN; 
H2"" cellp(B[H_CP _OFFSET]); 
TR • TR2 ... cellp(B[TR_CP _OFFSET]); 
E2= E; 

i remove the dummy topmost choice point *I 
B += FIXED_CP _SIZE; 

} 

i hard to get all the benefit from this. The main problem is that we •; 
i cannot mark env variables as easily. Since this is applied only •; 
i after gctrail and gcenv, if an env variable is found to be •; 
i pointing to a location that is unmarked2 in new space, we know we •; 
i can reset it. We could extend that by dereferencing the var. If •; 
i the first entry to new space is not marked, we can reset the var ·; 
void Choice::virtual_backtrack() 
{ 
#ifdef WITH VIRTUAL BACK 

Cell* varO ; tr; -
Cell• var • cellp(b[TR_CP _OFFSET]); 
tr = var; 
for(; var > varO; var-) { 

Cell* ptr ... addr(*var); 
If (ptr >• EO) { 

Cell val • *ptr; 
while (get_tag(val) == T AGREF && addr(val) >= EO && addr(val) != ptr) { 

ptr = addr(val); 
val= *ptr; 

} 
If (pointer_to_new(*ptr) && unmarked2(addr(*ptr))) 

*addr(*var) = *var; 
} else If (ptr >• HMIN) { 

If (unmarked2(ptr)) 

} 
} 

#end if 
} 

*ptr = *var; 
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!" This stack exactly simulates what would happen on backtracking *I 
!"supposing we encounter an infinite sequence of fails. This is *I 
!"really virtual backtracking! The problem is really the difference *I 
!" in sizes of the environments, depending on the point of view! That *I 
!"is the only reason why we need a stack (or marking bits). Stacks *I 
!" are preferable in general because they are faster and cleaner. *I 
!" the cost is on choice points only *I 

Choice::Choice(Cell* E, Cell* B) 
{ 

} 

b= 8; 
tr = cellp(B[TR_CP _OFFSET]); 
preserved.init(cellp(b[E_CP _OFFSET])); 
already _done .in it( E); 

void Choice::mark() 
{ 
#ifdef WITH_ VIRTUAL_BACK 

virtual_ backtrack(); 
Cell* x = b + X1 CP OFFSET; 
Cell* xO = x + b[SIZE_CP _OFFSET]; 
for(; x < xO; X++) { 

} 

Cell* ptr = x; 
Cell val = *ptr; 
while (get_tag(val) == TAGREF && addr(val) >= E2 && addr(val) != ptr) { 

ptr = addr(val); 
val= *ptr; 

} 
If (get_tag(val) •• TAGCONST) continue; 
If (to_new_space(addr(val))) 

mark_from_base (ptr); 

#else 
Cell* x = b + X1 CP OFFSET; 
Cell* xO = x + b(SIZE_CP _OFFSET]; 
for(; x < xO; X++) { 

If (get_tag(*x) == T AGCONST) continue; 
If (to_new_space(addr(*x))) 

mark_from_base(x); 
} 

#end if 
} 

#define use(ACTION,PROC_NAME)\ 
void Choice::PROC_NAME()\ 
{\ 

} 

while (already_done.e > preserved.e)\ 
already _done.next() ;\ 

Env e_limit = already_done;\ 
already_done =preserved;\ 
while (preserved.e >= E2) {\ 

If (preserved.e > e_limit.e) {\ 
preserved.ACTION() ;\ 
preserved. next();\ 

} else If (preserved.e == e_limit.e) {\ 
preserved. treated( e_limit.size) ;\ 
preserved.ACTION() ;\ 
break;\ 

} else{\ 
top_level_error("Inconsistent Path thru Env Stack");\ 

}\ 
}\ 
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use(mark,markJ)reserved_envs) 
use(mark_sweep,markJ)reserved_envs_sweep) 
use(update,updateJ)reserved_envs) 
#undef use 

void Choice::update() 
{ 

Cell* x • b + X1 CP OFFSET; 
Cell* xO. x + b[SIZE_CP _OFFSET]; 
for(; x < xO; X++) 

*x = check_and_relocate(*x); 

!* rotates the size fields of the choice points [82,8] down, putting *I 
!*the one for 82 in B[SIZE_CP_OFFSET] *I 
void cp_to_cp_forward() 
{ 

lnt b2_size • 82[SIZE_CP _OFFSET]; 
Cell* b .. B; 
lnt size • b[SIZE_CP _OFFSET]; 
while (b < 82) { 

} 

b +• FIXED_CP _SIZE+ size; 
lnt temp- size; 
size= b[SIZE_CP _OFFSET]; 
b[SIZE_CP _OFFSET]= temp; 

B[SIZE_CP _OFFSET] = b2_size; 
} 

I* do the opposite. composing those two should be a noop *I 
void cp_to_cp_backward() 
{ 

lnt b_size = B[SIZE_CP _OFFSET]; 
Cell* b- 82; 
lnt size= b[SIZE_CP _OFFSET]; 
while (b > B) { 

} 

b -= FIXED_CP _SIZE + size; 
lnt temp = size; 
size .. b[SIZE_CP _OFFSET]; 
b[SIZE_CP _OFFSET] =temp; 

82[SIZE_CP _OFFSET] = b_size; 
} 

I* THE TRAIL STACK*/ 

/* OLD VERSION 
void gctrai/_passt() 
{ 

TraiiCP cp(B2, B); 
register Celr trO ""' cp.tr; 
register Cell* tr,.. cp.tr; 
register Cell* copy_tr = cp.tr; 
while (cp.nonempty()) { 
tr = trO; 
trO • cp.next_tr; 
for(; tr > trO; tr--) { 

register Cell* ptr = addr('*tr); 
switch (cp.passt_action(ptr)) { 
case TRAIL_MARK: 

mark_from_base(ptr); 
*copy_tr-- = *tr; 
break; 

case TRAIL_KEEP: 
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·copy_tr-- •tr; 
break; 

case TRAIL_SKIP: 
break; 

} 
} 
cp.update_tr(copy_tr); 
cp.next(); 

} 
} 
"I 

;- takes advantage of the fact that the tag bit is in the lower bits "I 
void gctrail_pass11 () 
{ 

TraiiCP cp(B2, B); 
register Cell* trO = cp.tr; 
register Cell* tr = cp.tr; 
register Cell* copy_tr = cp.tr; 
while (cp.nonempty()) { 
tr = trO; 
trO = cp.next_tr; 
Cell* e = cp.e; 
Cell* h = cp.h; 
for(; tr > trO; tr-) { 

If (cellp(*tr) < h II (cellp(*tr) < e && cellp("tr) >= EO)) 
"copy_tr-- • *tr; 

} 
cp.update_tr(copy_tr); 
cp.next(); 

} 
} 

void gctrail_pass12() 
{ 

register Cell* trO = cellp(B[TR_CP _OFFSET]); 
register Cell* tr = cellp(B2[TR_CP _OFFSET]); 
for(; tr > trO; tr--) { 

} 
} 

reg lster Cell* ptr = addr("tr); 
If (ptr >= E2 II (ptr < EO && ptr >= HMIN)) 
continue; 

If (pointer_to_new(*ptr)) 
mark_from_base(ptr); 

void gctrail_pass1 () 
{ 
gctrail_pass 11 (); 
gctrail_pass12(); 

} 

r 82 has been set to BMIDDLE meanwhile; only look at the top part of •; 
I* the trail above BMIDDLE now. •; 
r Also, there is the special case of trail entries pointing to the "! 
r part that has been copied. Some of those need relocation •; 
void gctrail_pass2() 
{ 
TraiiCP cp(B2, B); 
Cell* trO = cp.tr; 
Cell* tr = cp.tr; 
Cell* copy_tr = cp.tr; 
while (cp.nonempty()) { 

tr = trO; 
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} 
} 

trO • cp.next_tr; 
for(; tr > trO: -tr) { 

Cell* ptr • addr(*tr): 
switch ( cp.pass2_action(ptr)) { 
case TRAIL_SKIP: 

break; 
case TRAIL RELOC: 

*copy:tr- • relocate(TAGREF, ptr); 
break; 

case TRAIL COPY RELOC: 
*copy:tr- • reiocate(TAGREF, ptr); 
ptr • reloc_addr(ptr); 
*ptr • check_and_relocate(*ptr): 
break; 

case TRAIL IND RELOC: 
*ptr == check_and_relocate(*ptr): 
*copy_tr-- • *tr: 
break; 

} 
} 
cp.update_tr(copy_tr): 
cp.next(); 

r control stacks ·; 

r we do the traversal of the environment stack and the choice point •; 
r stack together. that way we can avoid having to traverse the •; 
r records twice, and we do not have to use marking nor any extra ·; 
r space: just two extra structures. •; 
r will be quite easy to add virtual backtracking inside this routine •; 
r it works as follows: first visit all envs above the topmost choice *I 
r point. then visit all envs that are above the next living env. two *I 
r loops alternating, one visiting next living envs, one visiting the *I 
r next preserved envs. if a given env is shared, its living part is *I 
I* first entirely marked, then we wait until the last choice point *I 
r that preserved that env and mark the part that is preserved. ·; 
r the update is simple macro substitution from the mark *I 

#define use(ACTION,PRESERVED_ACTION,PROC_NAME)\ 
void PROC_NAME()\ 
{\ 
r first, take care of living cells *I\ 
Env env( E);\ 
for(;;) {\ 

if ( env .e <• E2) {\ 
If (env.e- E2)\ 

env.ACTION();\ 
break;\ 

}\ 
env .ACTION();\ 
env .next();\ 

}\ 
r now, take care of preserved cells • /1. 
Choice cp(E, B);\ 
for (;;) {\ 

If (cp.last()) break:\ 
cp.ACTION();\ 
cp.PRESERVED _ACTION();\ 
cp.next();\ 

}\ 
} 
use(mark,mark_preserved_envs,gccontrol_pass1) 
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use( update ,update_preserved_envs,gccontrol_pass2) 
#undef use 

r new space itself: compaction phase ·; 

r not too hard. just go thru new area and the marking area in •; 
!"parallel. each time i encounter something marked, copy it down •; 
r in copy space. leave behind in each location the relocation •; 
r address (untagged). ·; 
r needs a second scan to compute the final addresses. proportional •; 
r to m+n in total"! 
r Also, for being able to restore global stack pointers uniformly, ·; 
r we add one entry at the top to relocate the topmost choice point •; 
r entry correctly •; 
r This is also the place to gather statistics about the efficiency "I 
r of the garbage collector ·; 
static Cell* H2_copy_value; 
static Cell* H_copy_value; 
void global_sweep() 
{ 

register Cell* p .. HMIDDLE; r from lowest cp segment"! 
register Cell" pO = H; 
register unsigned char• m = &MKMIN[HMIOOLE- HMIN]; 
register Cell" h = H2; 
H_copy_value"" HMIDDLE; 

r sweep pass. Should always write relocation addresses "! 
for(; p < pO; p++, m++) { 

} 

If (*m == MARK) { 
"h = *p; 
•p '"'cell(h); 
h++; 

} else { 
•p = cell(h); 

} 

!" relocation info for the topmost choice point •; 
*p = cell(h); 

r relocate pointers to new space "! 
p = H2_copy_value .. H2; 
H2 = pO = h; 
for(; p < pO; P++) { 

} 
} 

If (pointer_to_new(*p)) 
•p = relocate("p); 

r the REF stack: delayed copying of variables in copy space "! 
r objects in the stack should be pointers to locations containing ref ·; 
r pointers to cp_down "! . 
r if virtual backtracking, we cannot guarantee visiting only once "! 
void gcref_pass1 () 
{ 

while (REF _STACK.nonempty()) { 
Cell* var =REF _STACK.pop(); 
Cell* ptr = addr("var); 

#ifdef WITH VIRTUAL BACK 
If(! to_new_space(ptr)) continue; 

#end if 
If (unmarked(ptr)) { 
mark(ptr); 
Cell val = *ptr; 
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} 

set_reloc_addr(ptr, COPY _ST ACK.top()); 
COPY _STACK.push(val); 
If (get_tag(val) •• TAGREF && addr(val) >• HMIN) 

REF _STACK.push(reloc_addr(ptr)); 

*var- make_ptr(TAGREF, reloc_addr(ptr)); 
} 

} 

!" marking ·; 

!" we pass a pointer to the cell containing the pointer to the object *I 
!" to mark. not necessary for marking, but necessary for copying. •; 
!" we use the space at the top of the choice point stack (between •; 
!" choice point stack and the environment stack) as the marking stack. *I 
!" we need to initialize the marking area at each gc. here, since we •; 
!" use one byte per mark, we can rotate the mark, and reduce the cost •; 
!"of initialization by 255. •; 

!"when copying, don't mark ref pointers nor what they point to. we •; 
!" will do it later. also trail pointers from copy area to new area *I 
!"to speed up relocation. •; 

;• suppose pis a global stack pointer; can't point to env stack •; 
!" should be recoded to use a table lookup instead of all those tests *I 

!" OLD VERSION 
inline int copy_or_mark(Ce/1* p) 
{ 

if (p < HMIN) 
retum SHOULD NEITHER; 

else if (p < HMIDDLE) 
retum (marked(p)) ? SHOULD_RELOC: SHOULD_ COPY; 

else 
retum (marked(p)) ? SHOULD_CHECK_MARK: SHOULD_MARK; 

lnt copy_or_mark_table[2][2] = { 
{SHOULD_MARK, SHOULD_CHECK_MARK}, 
{SHOULD_COPY, SHOULD_RELOC} 

} ; 

inline lnt copy_or_mark(Cell* p) 
{ 

If (p > .. HMIN) 
return copy_or_mark_table[(p < HMIDDLE)][marked(p)]; 

else 
return SHOULD_NEITHER; 

!" In the copy part, a list or a structure is marked iff any of its •; 
!" elements is. •; 
void mark_from_base(Cell* p) 
{ 

MARK_STACK.init(B); 
MARK_ST ACK.push(p); 
for(;;) { 

Cell* var; 
If (COPY _STACK.nonempty()) 
var = COPY _ST ACK.pop(); 

else If (MARK_STACK.nonempty()) 
var = MARK_STACK.pop(); 

else 
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break; 

switch (get_tag(*var)) { 
case T AGCONST: 

break; 
case T AGREF: 

{ 
Cell* pt( • addr(*var); 
switch (copy_or_mark(ptr)) { 
case SHOULD_MARK: 

mark(ptr); 
MARK_ST ACK.push(ptr); 
break; 

case SHOULD_RELOC: i ptr to marked copied location *I 
*var • mat<e_ptr(TAGREF, reloc_addr(ptr)); 
break; 

case SHOULD COPY: 
REF _STACK.push(var); 
for(;; var = ptr, ptr = addr(*ptr)) { 
i here, ptr is always a pointer to low cp segment *I 

#ifdef WITH VIRTUAL BACK 

#else 

#end if 

lf (get_tag{*ptr) != T AGREF) { 
MARK_ST ACK.push(ptr); 
mark2(ptr); 
break; 

} 
If (ptr < HMIN II *var =• *ptr II marked2(ptr)) 

break; 
mark2 (ptr) ; 

If (get_tag(*ptr) !· TAGREF) { 
MARK_ST ACK.push(ptr); 
break; 

} 
If (ptr < HMIN II marked(ptr) II *var =<= *ptr) 

break; 

} 
break; 

case SHOULD CHECK MARK: 
case SHOULD,=NEITHER: 

break; 
} 

} 
break; 

case T AGLIST: 
{ 

Cell* list = addr(*var); 
switch (copy_or_mark(list)) { 
case SHOULD_CHECK_MARKmarked(car) && unmarked(cdr) *I 

If (unmarked( list + 1 )) { 
mark( list+ 1 ); 
MARK_STACK.push(list + 1); 

} 
break; 

case SHOULD_MARK: 
for (lnt i = 0; i < 2; i++) { 

mark( list + i); 
MARK_STACK.push(list + i); 

} 
break; 

case SHOULD_COPY: 
*var = make_ptr(TAGLIST, COPY_STACK.top()); 
for (i = O; i < 2; i++) { 
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} 
} 

mark( list + i); 
Cell* dest • COPY _STACK.top(); 
COPY _ST ACK.push(list[i]); 
set_reloc_addr(list + i, dest); 

} 
break; 

case SHOULD_RELOC: 
*var .. make_otr(TAGLIST, reloc_addr(list)); 
break; 

case SHOULD_NEITHER: 
break; 

} 
} 
break; 

case T AGSTRUCT: 
{ 

Cell* str - addr(*var); 
switch (copy_or_mark(str)) { 
case SHOULD_MARK: 

lnt iO ,.. get_int(str[1]) + 2; 
for (lnt i • 0; i < 2; i++) 

mark(str + i); 
for (i = 2; i < iO; i++) { 

mark(str + i); 
MARK_STACK.push(str + i); 

} 
break; 

case SHOULD COPY: 
*var • make_Pir(TAGSTRUCT, COPY_STACK.top()); 
iO - get_int(str[1]) + 2; 
for (i • O; i < iO; i++) { 

mark( str + i); 
Cell* dest = COPY_STACK.top(); 
COPY _STACK.push(str[ij); 
set_reloc_addr(str + i, dest); 

} 
break; 

case SHOULD RELOC: 
*var = make_Ptr(TAGSTRUCT, reloc_addr(str)); 
break; 

case SHOULD CHECK MARK: 
case SHOULD=NEITHER: 

break; 
} 

} 
break; 

} 

l" should allocate a fixed size region, just under new area. Needs "I 
!" only be initialized once with Os. For the rest, We can just flip "I 
r and use a global variable, say MARK. MARK is initialized to the "! 
r current gc number modulo 255. When it overflows, the area is "I 
r cleared again. During marking, only MARK is written in the byte "! 
r corresponding to the word to be written. To be marked just means "! 
r that this mark is being written. Only called when MARK is null "I 

void init_marking_table() 
{ 
#ifdef WITH VIRTUAL BACK 

If (MARK !; 2) return; 
#else 

If (MARK != 1) return; 
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#end if 
register lnt* p • (lnt*) MKMIN; 
register lnt* pO • HMIN; 
while (p < pO) 
*p++. 0; 

I" basic initializations *I 

void gc_init() 
{ 
#ifdef WITH VIRTUAL BACK 

MARK= 2-; ((GC_CO-UNTER% 127) + 1); /"values from 2 to 254 */ 
MARK2 = MARK + 1; /" values from 3 to 255 *I 

#else 
MARK = (GC_COUNTER % 255) + 1; /"values from 1 to 255 *I 

#end if 

} 

GC_ COUNTER++; 
REF _ST ACK.init(E); 
COPY _STACK.init(H2); 

I" some basic data: mark(scan,recovered), copy(scan,recovered), cputime *I 
/"the data are given in number of cells. milliseconds. *I 
struct rusage gc_rusage; 
Cell* H2_entry_value; 
Cell* H_entry_value; 
Cell* TR_entry_value; 
Cell* TR2_entry_value; 
void init_stats() 
{ 

} 

getrusage(RUSAGE_SELF, &gc_rusage); 
H2_entry_value = H2; 
H_entry_value = H; 
TR_entry_value = TR; 
TR2_entry_value = TR2; 

void display_stat1 (char* legend, lnt before, lnt after) 
{ 

float percent= (before) ? ((float) after/before) * 100 : 0; 
printf("%s (%d, %d, %2 .lf), ",legend, before, after, percent); 

} 

void display_stat2(char* legend, lnt tb, lnt cb, lnt ta, lnt ca) 
{ 

float percentb = (tb) ? ((float) cb/tb) * 100 : 0; 
float percenta - (ta) ? ((float) ca/ta) * 1 00 : 0; 
printf("%s (%2 .lf, %2 .lf), ",legend, percentb, percenta); 

} 

lnt gc_scanned; 
lntgc_copy_scanned; 
int gc_survivors; 
lnt tr_scanned; 
lnt tr_survivors; 
float gc_time; 

void compute_stats() 
{ 
struct timeval from = gc_rusage.ru_utime; 
getrusage( R USAGE_S ELF, &gc_rusage); 
struct timeval to= gc_rusage.ru_utime; 
float mstime = (float) to.tv_usec I 1000000 + to.tv_sec; 
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mstime --(float) from.tv_usec I 1000000 + from.tv_sec; 
gc_time +• mstime; 
If (DISPLAY_GC) 
printf("time (% .3£)). \n", mstime); 

If (trace_heap_flag) 
heap_usage.gc_enter(H_entry _value, H2_entry _value); 

void mark_copy_stats() 
{ 

} 

gc_scanned +• H_entry_value- HMIN; 
gc_copy_scanned +• H_copy_value- HMIN; 
gc_survivors +• H2- H2_entry_value; 
tr_scanned += TR2_entry_value- TR_entry_value; 
tr_survivors +• TR2_entry_value- TR; 
If (DISPLAY_GC) { 
cout << "gc ( "; 
display_stat1("global", H_entry_value- HMIN, H2- H2_entry_value); 
display_stat2(" copy", 

H_entry_value- HMIN, H_copy_value- HMIN, 
H2- H2_entry_value, H2_copy_value- H2_entry_value); 

display_stat1 ("tr", TR2_entry_vatue-TR_entry_value, TR2_entry_value-TR); 
} 

/* top level •; 
/*assumes that GC_DOES_COPY. Should also work if everything is above •; 
I* the topmost choice point, though slower than the special purpose •; 
/* fast_copy garbage collector •; 

lnt DISPLAY_GC; 

void mark_copy() 
{ 

init_stats(); 
store_regs_in_env(); 
setup_cps_pass1 (); 
gc_init(); 
init_marking_table(); 
cp_to_cp_forward(); 
gctrail_pass1 (); 
cp_to_cp_backward(); 
gccontrol_pass1 (); 
gcref_pass 1 (); 
setup_cps_pass2(); 
global_sweep(): 
gccontrol_pass2(): 
cp_to_cp_forward(); 
gctrail_pass2(); 
cp_to_cp_backward(); 
restore_top_env(); 
restore_cps(); 
mark_copy_stats(): 
compute_stats(): 

} 

int WHICH GC = MARK COPY; 
int CHEc(:_GC_LIMIT; -
tnt GC_COUNT_LIMIT; 

;• we optimize the mark_ copy case. Clearly, ff there is nothing to •; 
I* copy, we should rather use mark_ compact. It is faster.! Around 7% •; 
I* faster in the case of gccomp. •; 
void garbage_collector() 
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{ 
If (CHECK_GC_LIMIT && GC_COUNTER >= GC_COUNT_LIMIT) { 
cerr<< "GC Limit passed\n"; 

} 
switch (WHICH_GC) { 
case MARK_COPY: 

mark_ copy(); 
break; 

case MARK_ COPY _FAST_COPY: 
If (deterministic()) 
fast_ copy(); 

else 
mark_copy(); 

break; 
case MARK_ THRESHOLD: 

If (enough_to_copy()) 
mark_copy(); 

else 
mark_compact(); 

break; 
case MARK_COMPACT: 

mark_compact(); 
break; 

case MARK_COMPACT_FAST_COPY: 
If (deterministic()) 
fast_copy(); 

else 
mark_ compact(); 

break; 
default: 

} 

top_level_error( 11 Select GC algorithm first\n 11
); 

break; 

if (TR- H2 <= HMAXHARD- HMIN) { 
top_level_error( 11 Global Stack Overflow\n 11

); 

} 
} 

void find_pointer(Cell val) 
{ 

Cell* p; 
Cell* pO; 

#define use(FROM,TO,NAME)\ 
for (p = FROM, pO =TO; p < pO; P++) {\ 

if (*p ... val)\ 
cerr <<NAME<< 11 

[ 
11 << (p- FROM)<< 11

) \n" ;\ 
} 

use(HO,H2, 11 HO 11
) 

use(HMIN,HMAXSOFT, 11 HMIN 11
) 

use(EO,E, "EO 11
) 

use(B,BO, "B ") 
use(TR,TRO, 11 TR ") 
#undefuse 
} 

#end if 




